›› 2011, Vol. 32 ›› Issue (4): 1040-1044.

• 基础理论与实验研究 • 上一篇    下一篇

黏土-结构接触面大剪切变形后渗流特性试验研究

雷红军,刘中阁,于玉贞,吕 禾   

  1. 清华大学 水沙科学与水利水电工程国家重点实验室,北京 100084
  • 收稿日期:2010-03-23 出版日期:2011-04-10 发布日期:2011-04-29
  • 作者简介:雷红军,男,1982年生,博士研究生,主要从事高土石坝渗流方面的研究
  • 基金资助:

    国家自然科学基金资助项目(No. 50879039,No. 50779024);水利部岩土力学与工程重点实验室开放基金项目(No. G07-05)

Experimental study of seepage characteristics of clayey soil-structure interface under large shear deformation

LEI Hong-jun,LIU Zhong-ge,YU Yu-zhen,LÜ He   

  1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
  • Received:2010-03-23 Online:2011-04-10 Published:2011-04-29

摘要:

黏土-结构接触面易产生大的剪切变形,且由于场地、施工等原因,接触面部位可能存在填筑缺陷、杂质等情况,这些因素均可能对其渗流安全产生不利影响。本文采用一种接触面剪切渗流试验装置,对黏土-结构接触面大剪切变形后的渗流特性进行了试验研究,重点模拟了接触面存在填筑缺陷及含有杂质两种工况下的渗流特性,并与均质黏土接触面渗流特性进行了对比,同时对接触面正应力、剪切变形、水力坡降的影响进行了分析。结果表明:含有填筑缺陷的接触面在大剪切变形过程中渗透性降低;而含有粉土杂质的混合黏土接触面,其渗透性起初随剪切变形的增加而减小,剪切至某一程度后反向增加;存在填筑缺陷和杂质的接触面渗透性强于均质黏土接触面

关键词: 黏土-结构接触面, 渗流, 大剪切变形, 水力坡降

Abstract:

Large shear deformation often occurs in the clayey soil-structure interface; and some defects and impurities near the interface may affect the seepage safety. By using a seepage test device for interface, seepage characteristics of clayey soil-structure interface under large shear deformation were studied. The conditions of the interface with construction defects and impurities were simulated and the seepage characteristics were compared with that of homogeneous clayey soil. The effects of normal stress, shear deformation and hydraulic gradient were analyzed. The results show that the permeability of the interface with defects decreases with large shear deformation; while the permeability of the interface with impurities decreases with shear deformation increase at the beginning and then increases after a certain shear deformation. The permeabilities of interfaces with defects and impurities are higher than that of homogeneous clayey soil.

Key words: clayey soil-structure interface, seepage, large shear deformation, hydraulic gradient

中图分类号: 

  • TU 411.4
[1] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[2] 刘成禹, 陈博文, 罗洪林, 阮家椿, . 满流条件下管道破损诱发渗流侵蚀的试验研究[J]. 岩土力学, 2020, 41(1): 1-10.
[3] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[4] 夏才初, 喻强锋, 钱 鑫, 桂 洋, 庄小清. 常法向刚度条件下岩石节理剪切−渗 流特性试验研究[J]. 岩土力学, 2020, 41(1): 57-66.
[5] 支永艳, 邓华锋, 肖瑶, 段玲玲, 蔡佳, 李建林. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(S1): 237-244.
[6] 许江, 邬君宇, 刘义鑫, 雷娇, . 不同充填度下岩体剪切−渗流耦合试验研究[J]. 岩土力学, 2019, 40(9): 3416-3424.
[7] 刘伟俊, 张晋勋, 单仁亮, 杨昊, 梁辰, . 渗流作用下北京砂卵石地层多排管局部 水平冻结体温度场试验[J]. 岩土力学, 2019, 40(9): 3425-3434.
[8] 李博, 黄嘉伦, 钟振, 邹良超, . 三维交叉裂隙渗流传质特性数值模拟[J]. 岩土力学, 2019, 40(9): 3670-3768.
[9] 张强, 李小春, 周英博, 石露, 白冰, . 高压孔隙CO2/水作用下完整四川三叠系 砂岩剪切特性的试验研究[J]. 岩土力学, 2019, 40(8): 3028-3036.
[10] 王鹏飞, 谭文辉, 马学文, 李子建, 刘景军, 武洋帆, . 不同粗糙度和隙宽贯通充填裂隙 渗流特性试验研究[J]. 岩土力学, 2019, 40(8): 3062-3070.
[11] 张天军, 庞明坤, 蒋兴科, 彭文清, 纪翔, . 负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J]. 岩土力学, 2019, 40(7): 2517-2524.
[12] 曹洪, 胡瑶, 骆冠勇. 滤管两端均不在含水层层面的承压不 完整井近似计算方法研究[J]. 岩土力学, 2019, 40(7): 2774-2780.
[13] 刘忠玉, 崔鹏陆, 郑占垒, 夏洋洋, 张家超. 基于非牛顿指数渗流和分数阶Merchant模型的 一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038.
[14] 刘 健, 陈 亮, 王春萍, 马利科, 王 驹. 一种非稳态气体渗流条件下岩石渗透特性 参数计算方法及应用[J]. 岩土力学, 2019, 40(5): 1721-1730.
[15] 金丹丹, 王 素, 李传勋. 考虑起始水力坡降的天然非均质地基固结分析[J]. 岩土力学, 2019, 40(4): 1433-1440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 殷 杰,高玉峰,洪振舜. 连云港软黏土的不排水强度试验研究[J]. , 2009, 30(11): 3297 -3301 .
[2] 陈绍杰,郭惟嘉,杨永杰. 煤岩蠕变模型与破坏特征试验研究[J]. , 2009, 30(9): 2595 -2598 .
[3] 林刚,徐长节,蔡袁强. 不平衡堆载作用下深基坑开挖支护结构性状研究[J]. , 2010, 31(8): 2592 -2598 .
[4] 穆彦虎,马 巍,孙志忠,刘永智. 青藏铁路块石路基冷却降温效果对比分析[J]. , 2010, 31(S1): 284 -292 .
[5] 赵炼恒,罗 强,李 亮,杨 峰,但汉成. 层状岩体边坡动态稳定性拟静力上限分析[J]. , 2010, 31(11): 3627 -3634 .
[6] 刘小丽,张丹丹,刘 凯,苏媛媛. 一种直剪式模型试验设备的设计及应用[J]. , 2010, 31(S2): 475 -480 .
[7] 康永君,杨 军,宋二祥. 地震作用下边坡安全系数时程计算及参数研究[J]. , 2011, 32(1): 261 -268 .
[8] 卢坤林,杨 扬. 考虑位移影响的主动土压力近似计算方法[J]. , 2009, 30(2): 553 -557 .
[9] 李荣建,于玉贞,吕 禾,李广信. 饱和砂土地基上抗滑桩加固边坡的动力离心模型试验研究[J]. , 2009, 30(4): 897 -902 .
[10] 肖成志,孙建诚,李雨润,刘晓朋. 三维土工网垫植草护坡防坡面径流冲刷的机制分析[J]. , 2011, 32(2): 453 -458 .