›› 2012, Vol. 33 ›› Issue (9): 2645-2649.

• 基础理论与实验研究 • 上一篇    下一篇

堆石料级配缩尺方法对其室内试验结果的影响

傅 华,韩华强,凌 华   

  1. 南京水利科学研究院,南京 210029
  • 收稿日期:2012-05-08 出版日期:2012-09-11 发布日期:2012-09-12
  • 作者简介:傅华,男,1977年生,在职博士研究生,高级工程师,主要从事粗粒料工程试验方面的研究工作
  • 基金资助:

    南京水利科学研究院基金项目(No. Y310003)

Effect of grading scale method on results of laboratory tests on rockfill materials

FU Hua, HAN Hua-qiang, LING Hua   

  1. Nanjing Hydraulic Research Institute, Nanjing 210029, China
  • Received:2012-05-08 Online:2012-09-11 Published:2012-09-12

摘要: 对同一条现场级配曲线通过缩尺方法缩制成不同的试验模拟级配,进行了密度、力学和渗流特性的对比试验。试验结果显示:全采用等量替代法缩尺后由于小于5 mm含量保持不变,粗、细颗粒充填关系不理想,对应于密度和力学特性最差,渗透系数最大,随着混合法中相似级配法的使用,小于5 mm含量逐渐增加,粗、细颗粒充填关系得到明显改善,缩尺后的密度和力学特性逐渐增加,却带来渗透系数的逐渐减小。目前国内相关规程、规范对级配缩尺方法并没有做具体、明确的规定,有必要通过大量室内和现场对比试验,总结出室内科学的缩尺方法并建立反映缩尺效应的经验公式。

关键词: 堆石料, 级配缩尺方法, 室内试验, 影响

Abstract: Comparative tests on the density, mechanical and seepage properties of rockfill materials are performed by preparing the same in-situ grading curve as different grading curves based on the scale methods. The test results show that according to the scale by means of the equivalent replacement method, owing to that the content of soil particles less than 5 mm does not change and the filling relation between coarse and fine particles is poor, the corresponding density and mechanical properties are the worst, and the coefficient of permeability is the largest. According to the similar grading method, one of the hybrid methods, the content of soil particles less than 5 mm gradually increases and the filling relation between coarse and fine particles is obviously improved; the relevant density and mechanical properties become larger and larger, however, the coefficient of permeability gradually decreases. At present, there are no specific and definite stipulations for the grading scale methods in Chinese codes and specifications. It is necessary to propose scientific laboratory scale methods for rockfill materials based on large quantity of laboratory and in-situ tests.

Key words: rockfill material, grading scale method, laboratory test, effect

中图分类号: 

  • TU 411
[1] 王培涛, 黄正均, 任奋华, 章亮, 蔡美峰, . 基于3D打印的含复杂节理岩石直剪特性 及破坏机制研究[J]. 岩土力学, 2020, 41(1): 46-56.
[2] 王忠凯, 徐光黎. 盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测[J]. 岩土力学, 2020, 41(1): 285-294.
[3] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[4] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[5] 丁艳辉, 张丙印, 钱晓翔, 殷 殷, 孙 逊. 堆石料湿化变形特性试验研究[J]. 岩土力学, 2019, 40(8): 2975-2981.
[6] 尹黎阳, 唐朝生, 谢约翰, 吕超, 蒋宁俊, 施斌, . 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.
[7] 张凌凯, 王睿, 张建民, 唐新军, . 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554.
[8] 孔宪京, 宁凡伟, 刘京茂, 邹德高, 周晨光, . 应力路径和干湿状态对堆石料颗粒破碎的影响研究[J]. 岩土力学, 2019, 40(6): 2059-2065.
[9] 杨杰, 马春辉, 程琳, 吕高, 李斌, . 高陡边坡变形及其对坝体安全稳定影响研究进展[J]. 岩土力学, 2019, 40(6): 2341-2353.
[10] 王 涛, 刘斯宏, 郑守仁, 鲁 洋, . 掺复合浆液堆石料压缩特性试验研究[J]. 岩土力学, 2019, 40(4): 1420-1426.
[11] 胡明鉴, 张晨阳, 崔翔, 李焜耀, 唐健健, . 钙质砂中毛细水高度与影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4157-4164.
[12] 钟祖良, 别聪颖, 范一飞, 刘新荣, 罗亦琦, 涂义亮, . 土石混合体注浆扩散机制及影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4194-4202.
[13] 张 骁, 肖军华, 农兴中, 郭佳奇, 吴 楠, . 基于HS-Small模型的基坑近接桥桩开挖 变形影响区研究[J]. 岩土力学, 2018, 39(S2): 263-273.
[14] 张 聪,梁经纬,张 箭,阳军生,张贵金,叶新田,. 基于脉动注浆的宾汉流体渗透扩散机制研究[J]. , 2018, 39(8): 2740-2746.
[15] 任连伟,周桂林,顿志林,何停印,杨权威,张敏霞,. 采空区建筑地基适宜性及沉降变形计算工程实例分析[J]. , 2018, 39(8): 2922-2932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐 明,陈金锋,宋二祥. 陡坡寺中微风化料的大型三轴试验研究[J]. , 2010, 31(8): 2496 -2500 .
[2] 林 杭,曹 平,李江腾,江学良,何忠明. 基于Hoek-Brown准则的三维边坡变形稳定性分析[J]. , 2010, 31(11): 3656 -3660 .
[3] 冉 龙,胡 琦. 粉砂地基深基坑渗透破坏研究[J]. , 2009, 30(1): 241 -245 .
[4] 魏 宁,李小春,王 燕,谷志孟. 城市垃圾填埋场甲烷资源量与利用前景[J]. , 2009, 30(6): 1687 -1692 .
[5] 牛文杰,叶为民,刘绍刚,禹海涛. 考虑饱和-非饱和渗流的土坡极限分析[J]. , 2009, 30(8): 2477 -2482 .
[6] 王可良,刘 玲,隋同波,徐运海, 胡廷正. 坝体岩基-橡胶粉改性混凝土现场抗剪(断)试验研究[J]. , 2011, 32(3): 753 -756 .
[7] 林达明,尚彦军,孙福军,孙元春,吴锋波,刘志强. 岩体强度估算方法研究及应用[J]. , 2011, 32(3): 837 -842 .
[8] 吴 剑,冯少孔,李宏阶. 钻孔成像中结构面自动判读技术研究[J]. , 2011, 32(3): 951 -957 .
[9] 李 涛 ,张志红 ,唐保荣. 太湖疏浚底泥堆场黏土防渗层阻隔污染物的试验研究[J]. , 2012, 33(4): 993 -998 .
[10] 李建军,邵生俊,杨扶银,杨春鸣. 防渗墙粗粒土槽孔泥皮的抗渗性试验研究[J]. , 2012, 33(4): 1087 -1093 .