›› 2014, Vol. 35 ›› Issue (S2): 495-500.

• 岩土工程研究 • 上一篇    下一篇

上海中山医院基坑逆作法施工时间效应分析

王国粹,梁志荣,魏 详   

  1. 现代设计集团上海申元岩土工程有限公司,上海 200040
  • 收稿日期:2014-05-08 出版日期:2014-10-31 发布日期:2014-11-12
  • 作者简介:王国粹,女,1985年生,博士,主要从事基坑和桩基方面的研究工作。

Study of time effect on top-down excavation of Shanghai Zhongshan Hospital

WANG Guo-cui, LIANG Zhi-rong, WEI Xiang   

  1. Shenyuan Geotechnical Engineering Co., Ltd., Shanghai Xiandai Architectural Design Group, Shanghai 200040, China
  • Received:2014-05-08 Online:2014-10-31 Published:2014-11-12

摘要: 软土具有流变性,因此,分析基坑开挖时需要考虑时间效应。逆作法施工时,由于出土条件和结构施工条件的限制,导致施工周期延长,因此,基坑施工的时间效应尤为显著。以上海中山医院工程为例,考虑软土流变效应,建立有限元模型对逆作法基坑的施工过程进行模拟,分析了施工期间各工况的围护和土体的内力与变形性状,并与实测结果进行了对比分析。结果表明,考虑土体流变的分析方法能较好的模拟逆作法施工的时间效应,并合理地反映基坑开挖过程对围护以及周边环境的影响。逆作法基坑施工过程复杂,开挖周期相对较长,应合理安排施工流程和施工速度,以达到控制围护结构及土体变形、保护周边环境的目的。

关键词: 基坑, 逆作法, 时间效应, 土体流变

Abstract: In light of the effect of soft soil rheology, the time effect of rheology should be considered in excavation analysis. Due to the excavated and structural construction conditions, construction period is prolonged, therefore time effect is particularly significant in the construction process. For the project of Shanghai Zhongshan Hospital, the finite element model is built to simulate the construction process of top-down excavation of foundation pits. The calculated displacement of diaphragm wall and soil is compared to the measured one in various operating conditions during construction. The results show that the model can reasonably reflect the impact of excavation on the structure and the surrounding environment, and rationally simulate the time effect of excavation. The construction process of top-down excavation and the excavation period is relatively long, so the construction process and the construction time should be reasonable arranged to control the deformation of structure and soil and protect the surrounding environment.

Key words: foundation pit, top-down method, time effect, soil rheology

中图分类号: 

  • O 302
[1] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[2] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[3] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[4] 丁智, 张霄, 金杰克, 王立忠, . 基坑全过程开挖及邻近地铁隧道变形实测分析[J]. 岩土力学, 2019, 40(S1): 415-423.
[5] 申翃, 李晓, 雷美清, 徐文博, 余秀玲, . 剪力键支护体系的构想及模型试验研究[J]. 岩土力学, 2019, 40(7): 2574-2580.
[6] 余 瑜, 刘新荣, 刘永权, . 基坑锚索预应力损失规律现场试验研究[J]. 岩土力学, 2019, 40(5): 1932-1939.
[7] 谷淡平, 凌同华, . 悬臂式型钢水泥土搅拌墙的水泥土 承载比和墙顶位移分析[J]. 岩土力学, 2019, 40(5): 1957-1965.
[8] 刘念武, 陈奕天, 龚晓南, 俞济涛, . 软土深开挖致地铁车站基坑及 邻近建筑变形特性研究[J]. 岩土力学, 2019, 40(4): 1515-1525.
[9] 钟国强, 王 浩, 孔 利, 王成汤, . 基于T-S模糊故障树的地连墙+支撑支护 基坑坍塌可能性评价[J]. 岩土力学, 2019, 40(4): 1569-1576.
[10] 李连祥, 刘嘉典, 李克金, 黄亨利, 季相凯, . 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 2019, 40(10): 4021-4029.
[11] 张 骁, 肖军华, 农兴中, 郭佳奇, 吴 楠, . 基于HS-Small模型的基坑近接桥桩开挖 变形影响区研究[J]. 岩土力学, 2018, 39(S2): 263-273.
[12] 郑 刚, 栗晴瀚, 哈 达, 程雪松, . 天津市承压层应力状态及减压引发沉降规律研究[J]. 岩土力学, 2018, 39(S2): 285-294.
[13] 王克忠, 金志豪, 杨麦珍, 刘先亮, 刘 华, . 取水塔基坑开挖过程倒悬岩坎围堰渗透稳定性研究[J]. 岩土力学, 2018, 39(S2): 415-422.
[14] 刘成禹,郑智享,. 改进的基于p-y曲线的基坑围护结构计算方法[J]. , 2018, 39(S1): 446-452.
[15] 周 勇,朱亚薇, . 深基坑桩锚支护结构和土体之间协同作用[J]. , 2018, 39(9): 3246-3252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋 晶,王 清,孙 铁,李晓茹,张中琼,焦志亮. 吹填土自重沉淤阶段孔隙水压力消散的试验研究[J]. , 2010, 31(9): 2935 -2940 .
[2] 陈正汉,方祥位,朱元青,秦 冰,魏学温,姚志华. 膨胀土和黄土的细观结构及其演化规律研究[J]. , 2009, 30(1): 1 -11 .
[3] 夏力农,雷 鸣,聂重军. 桩顶荷载对负摩阻力性状影响的现场试验[J]. , 2009, 30(3): 664 -668 .
[4] 潘鹏志,冯夏庭,周 辉. 脆性岩石破裂演化过程的三维细胞自动机模拟[J]. , 2009, 30(5): 1471 -1476 .
[5] 叶为民,黄 伟,陈 宝,郁 陈,王 驹. 双电层理论与高庙子膨润土的体变特征[J]. , 2009, 30(7): 1899 -1903 .
[6] 陈 明,卢文波,周创兵,罗 忆. 初始地应力对隧洞开挖爆生裂隙区的影响研究[J]. , 2009, 30(8): 2254 -2258 .
[7] 胡云世,苏 辉,成怡冲,艾智勇. 层状可压缩岩基三维固结问题的状态空间解[J]. , 2011, 32(S1): 176 -180 .
[8] 张 红 ,郑颖人 ,杨 臻 ,王谦源 ,葛苏鸣. 黄土隧洞支护结构设计方法探讨[J]. , 2009, 30(S2): 473 -478 .
[9] 陈建功 ,周陶陶 ,张永兴. 深部洞室围岩分区破裂化的冲击破坏机制研究[J]. , 2011, 32(9): 2629 -2634 .
[10] 刘海明 ,杨春和 ,张 超 ,冒海军 ,曹 净 . 高压下尾矿材料幂函数型摩尔强度特性研究[J]. , 2012, 33(7): 1986 -1992 .