›› 2018, Vol. 39 ›› Issue (9): 3253-3260.doi: 10.16285/j.rsm.2016.2796

• 基础理论与实验研究 • 上一篇    下一篇

渗透压–应力耦合作用下页岩渗透性试验

左宇军1,2,3,4,孙文吉斌1,2,3,4,邬忠虎5,许云飞1,2,3,4   

  1. 1. 贵州大学 矿业学院,贵州 贵阳 550025;2. 贵州大学 贵州省非金属矿产资源综合利用重点实验室,贵州 贵阳 550025; 3. 贵州大学 贵州省优势矿产资源高效利用工程实验室,贵州 贵阳 550025;4. 贵州大学 复杂地质矿山开采安全技术工程中心,贵州 贵阳 550025;5. 贵州大学 土木工程学院,贵州 贵阳 550025
  • 收稿日期:2016-12-01 出版日期:2018-09-11 发布日期:2018-10-08
  • 作者简介:左宇军,男,1965年生,博士后,教授,主要从事岩石力学与采矿工程方面的教学与研究工作。
  • 基金资助:

    国家自然科学基金重点项目(No. 51574093,No. 51774101);贵州省重大应用基础研究项目(黔科合JZ字[2014]2005);贵州省高层次创新型人才培养项目(黔科合人才(2016)4011号);贵州大学人才引进项目(贵大人基合字[2017]63号)。

Experiment on permeability of shale under osmotic pressure and stress coupling

ZUO Yu-jun1, 2, 3, 4, SUN Wen-ji-bin1, 2, 3, 4, WU Zhong-hu5, XU Yun-fei1, 2, 3, 4   

  1. 1. Mining College, Guizhou University, Guiyang, Guizhou 550025, China; 2. Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guizhou University, Guiyang, Guizhou 550025, China; 3. Engineering Laboratory for Efficient Utilization of Superior Mineral Resources in Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China; 4. Engineering Center for Safe Mining Technology under Complex Geologic Condition, Guizhou University Guiyang, Guizhou 550025, China; 5. College of Civil Engineering, Guizhou University, Guiyang, Guizhou 550025, China;
  • Received:2016-12-01 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the Key Program of the National Natural Science Foundation of China (51574093, 51774101), the Major Application Foundation Research Project of Guizhou Province(JZ2014-2005), the High Level Innovative Talents Training Project of Guizhou Province(2016-4011) and the Talent Introduction Project of Guizhou University(2017-63).

摘要: 为了探究渗透压-应力耦合作用下页岩的渗透性,选用岩石伺服三轴试验系统,在不同渗透压差和围压条件下对页岩进行全应力、应变渗透性试验。分析页岩不同变形阶段与渗透率的关系,探讨页岩破坏过程中形成的局部压缩带与渗透性的关联性。试验结果表明:相同渗透压差、不同围压下,初始渗透率随着围压增大而呈不同程度的减小,峰值强度随着围压增加而增大;相同围压、不同渗透压差下,试样渗透率随着渗透压差增加而呈不同程度的增大,但是峰值强度有一定程度的降低;试验结果表明,页岩出现了局部压缩带的现象,压缩带的出现对渗透率增加有着抑制的作用,它的出现并不是页岩脆-延转换临界点出现的特征,而是孔裂隙萌生、扩展并开始软化的标志性特征;页岩试样在高围压条件下出现硬化现象,在低围压条件下的页岩试样内部孔裂隙渗流网络的形成早于高围压下硬化的页岩试样,破坏模式以高角度剪切破坏为主。研究页岩不同应力环境下的渗透性,对揭示页岩气开发过程中页岩的渗流机制具有实际意义。

关键词: 岩石力学, 页岩, 渗透压-应力耦合, 渗透性, 压缩带

Abstract: To understand the permeability of shale under osmotic pressure and stress coupling, a servo-controlled triaxial rock testing system was employed to determine the complete strain-stress curves and permeability of shale under different confining pressures and osmotic pressures. The relationships between the deformation stage and permeability of shale samples were analyzed. The relationship between the compression zone and the permeability in the process of shale destruction was discussed. The results show that under different confining pressures, the initial permeability decreases with the increase of confining pressure, and the peak intensity increases with the increase of confining pressure. Under the same confining pressure, the permeability of the samples increases with the increase of the osmotic pressure, but the peak strength decreases to a certain extent. It is found that there is a localised compression zone in the shale, and the compression zone appears to inhibit the increase of permeability. The appearance of the compression zone is not the characteristic of the brittle to the ductile transition critical point, but the characteristics of the initiation, propagation and softening of pores. The shale samples appear hardening under high confining pressure. Under the low confining pressure, the formation of the fracture network in the shale is earlier than the samples under high confining pressure, and the failure mode is mainly dominated by the high-angle shear failure. This study on the permeability of shale under different stress conditions is significant to reveal the percolation mechanism of the process of shale gas development.

Key words: rock mechanics, shale, osmotic pressure and stress coupling, permeability, compression zone

中图分类号: 

  • TU 452
[1] 唐建新,腾俊洋,张 闯,刘 姝, . 层状含水页岩蠕变特性试验研究[J]. , 2018, 39(S1): 33-41.
[2] 李玉丹,董平川,周大伟,吴子森,汪 洋,曹 耐. 页岩气藏微裂缝表观渗透率动态模型研究[J]. , 2018, 39(S1): 42-50.
[3] 董金玉,王 闯,周建军,杨继红,李严威,. 泡沫改良砂卵石土的试验研究[J]. , 2018, 39(S1): 140-148.
[4] 赵子江,刘大安,崔振东,唐铁吾,韩伟歌,. 半圆盘三点弯曲法测定页岩断裂韧度(KIC) 的实验研究[J]. , 2018, 39(S1): 258-266.
[5] 杨建民,霍王文,. 渗透性水平向各向异性导致椭圆形地面沉降漏斗的一个性质[J]. , 2018, 39(8): 2960-2976.
[6] 张 萍,杨春和,汪 虎,郭印同,徐 峰,侯振坤,. 页岩单轴压缩应力-应变特征及能量各向异性[J]. , 2018, 39(6): 2106-2114.
[7] 谢学斌,邓融宁,董宪久,闫泽正,. 基于突变和流变理论的采空区群系统稳定性[J]. , 2018, 39(6): 1963-1972.
[8] 李志刚,徐光黎,黄 鹏,赵 欣,伏永朋,苏 昌,. 粉砂质板岩力学特性及各向异性特性[J]. , 2018, 39(5): 1737-1746.
[9] 周 辉,姜 玥,卢景景,胡大伟,张传庆,陈 珺,李 震, . 岩石空心圆柱扭剪仪试验能力[J]. , 2018, 39(5): 1917-1922.
[10] 李 清,于 强,徐文龙,万明华,张 正,吕 陈,王汉军,. 应变片法确定Ⅰ型裂纹动态应力强度因子试验研究[J]. , 2018, 39(4): 1211-1218.
[11] 腾俊洋,唐建新,张 闯, . 层状含水页岩的抗拉强度特性试验研究[J]. , 2018, 39(4): 1317-1326.
[12] 周 辉,姜 玥,卢景景,胡大伟,张传庆,陈 珺,李 震, . 岩石空心圆柱扭剪试验系统研制[J]. , 2018, 39(4): 1535-1542.
[13] 汤积仁,卢义玉,陈钰婷,张欣玮,敖 翔,贾云中,李 倩,. 超临界CO2作用下页岩力学特性损伤的试验研究[J]. , 2018, 39(3): 797-802.
[14] 周 辉,陈 珺,卢景景,张传庆,胡大伟,孟凡震,姜 玥, . 岩石多功能剪切试验测试系统研制[J]. , 2018, 39(3): 1115-1122.
[15] 司雪峰, 宫凤强,罗 勇,李夕兵, . 深部三维圆形洞室岩爆过程的模拟试验[J]. , 2018, 39(2): 621-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[2] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[3] 贾 强,张 鑫,应惠清. 桩基础托换开发地下空间不均匀沉降的数值分析[J]. , 2009, 30(11): 3500 -3504 .
[4] 肖衡林,余天庆. 山区挡土墙土压力的现场试验研究[J]. , 2009, 30(12): 3771 -3775 .
[5] 鲁祖德,陈从新,陈建胜,童志怡,左保成,戴旭明. 岭澳核电三期强风化角岩边坡岩体直剪试验研究[J]. , 2009, 30(12): 3783 -3787 .
[6] 王桂尧,李 斌,付宏渊. 非饱和路基土水分运移的室内试验研究[J]. , 2010, 31(1): 61 -65 .
[7] 姜耀东,赵毅鑫,周 罡,孙 磊,秦 玮. 广州地铁超长水平冻结多参量监测分析[J]. , 2010, 31(1): 158 -164 .
[8] 张春会,于永江,岳宏亮,赵全胜. 随机分布裂隙煤岩体模型及其应用[J]. , 2010, 31(1): 265 -270 .
[9] 黄 博,丁 浩,陈云敏,赵 宇. GDS空心圆柱仪动力试验能力探讨[J]. , 2010, 31(1): 314 -320 .
[10] 陈开圣,沙爱民. 压实黄土回弹模量试验研究[J]. , 2010, 31(3): 748 -752 .