岩土力学 ›› 2020, Vol. 41 ›› Issue (10): 3415-3424.doi: 10.16285/j.rsm.2020.0062

• 岩土工程研究 • 上一篇    下一篇

基于统计分析的地下厂房边墙最大收敛变形 多指标预测方法

骆顺天1, 2,杨凡杰2, 3,周辉2, 3,张传庆2, 3,王旭宏4, 吕涛4,朱勇2, 3,卢景景2, 3   

  1. 1. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068;2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,湖北 武汉 430071;3. 中国科学院大学,北京 100049;4. 中国核电工程有限公司,北京 100840
  • 收稿日期:2020-01-17 修回日期:2020-06-08 出版日期:2020-10-12 发布日期:2020-11-07
  • 通讯作者: 杨凡杰,男,1982年生,博士,助理研究员,主要从事岩石力学试验、理论模型与数值分析方法方面的研究工作。E-mail: Fjyang@whrsm.ac.cn E-mail: shuntianluo@163.com
  • 作者简介:骆顺天,男,1994年生,硕士研究生,主要从事岩石力学方面的研究工作。
  • 基金资助:
    国家重点研发计划项目(No. 2019YFC0605103,No. 2019YFC0605104,No. 2019YFC0605100);国家自然科学基金?雅砻江联合基金重点项目(No. U1865203)。

Multi-index prediction method for maximum convergence deformation of underground powerhouse side wall based on statistical analysis

LUO Shun-tian1, 2, YANG Fan-jie2, 3, ZHOU Hui2, 3, ZHANG Chuan-qing2, 3, WANG Xu-hong4, LÜ Tao4, ZHU Yong2, 3, LU Jing-jing2, 3   

  1. 1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
  • Received:2020-01-17 Revised:2020-06-08 Online:2020-10-12 Published:2020-11-07
  • Supported by:
    This work was supported by the National Key R&D Program of China (2019YFC0605103, 2019YFC0605104, 2019YFC0605100) and the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China (U1865203).

摘要: 准确预测围岩变形是大型地下硐室科学设计与安全施工的重要前提之一。现有地下硐室围岩变形预测方法主要基于已施工部位围岩变形情况来预测未施工部位围岩的变形趋势,难以满足工程勘察设计阶段准确预测围岩整体变形的要求。在统计分析国内31例大型地下硐室实测资料的基础上,提出了一种适用于工程勘察设计阶段的大型地下厂房边墙最大收敛变形多指标预测方法。该方法分析了31例工程案例的实测数据,发现单轴饱和抗压强度与地应力的比值(强度应力比R/?)、地质强度指标(GSI)和完整岩石的材料常数mi对围岩变形影响较大,并给出了相应的计算方法,同时采用最大收敛变形与硐室高度比(相对变形值U/H)评价了围岩变形量值的大小。通过大量的统计分析建立了地下硐室相对变形值U/H与3个指标之间的预测公式。通过工程实例验证了所提大型地下厂房边墙最大收敛变形预测方法。结果表明,该预测方法的计算结果与实际结果非常接近,说明了所提方法的合理性。

关键词: 岩土工程, 大型地下硐室, 地下厂房边墙, 最大收敛变形, 统计分析, 预测方法

Abstract: Accurate prediction of surrounding rock deformation is one of the important prerequisites for scientific design and safe construction of large underground caverns. Existing prediction methods for surrounding rock deformation of underground cavern are mainly based on the monitoring data of the constructed locations surrounding rock deformation to predict the deformation trend of unconstructed locations. This causes difficulties in meeting the requirement of accurately predicting the total surrounding rock deformation of in engineering survey and design stage. Based on the statistical analysis of measured data from 31 large underground caverns in China, a method for predicting the maximum convergence deformation of underground powerhouse side wall based on multiple indexes was proposed. Firstly, it is found that the ratio of saturated uniaxial compressive strength to ground stress R/?, geological strength index (GSI) and material constant of intact rock mi have great influence on the surrounding rock deformation in the 31 cases. Their calculation methods are also given. Meantime, the ratio of maximum convergence deformation to cavern height (relative deformation value U/H) is used to evaluate the value of surrounding rock deformation. Secondly, through many statistical analyses, the prediction formula between the relative deformation value (U/H) of underground cavern and the three indexes is established. Finally, the method for predicting maximum convergence deformation of underground powerhouse side wall is verified by an engineering example. The results show that the calculated results by this method are very close to the actual results, which indicates the rationality of the proposed method.

Key words: geotechnical engineering, large underground cavern, side wall of underground powerhouse, maximum convergence deformation, statistical analysis, prediction method

中图分类号: 

  • TV 731.6
[1] 孙壮壮, 马刚, 周伟, 王一涵, 陈远, 肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.
[2] 史江伟, 范燕波, 裴伟伟, 陈永辉, 张显, . 盾构下穿非连续管线变形特性及预测方法研究[J]. 岩土力学, 2021, 42(1): 143-150.
[3] 万志辉, 戴国亮, 高鲁超, 龚维明, . 大直径后压浆灌注桩承载力和沉降的 实用计算方法研究[J]. 岩土力学, 2020, 41(8): 2746-2755.
[4] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[5] 师旭超, 孙运德. 线性卸荷作用下软土超孔隙水压力 变化规律分析[J]. 岩土力学, 2020, 41(4): 1333-1338.
[6] 范日东, 杜延军, 刘松玉, 杨玉玲, . 无机盐溶液作用下砂−膨润土竖向隔离屏障 材料化学相容性试验研究[J]. 岩土力学, 2020, 41(3): 736-746.
[7] 田威, 王震, 张丽, 余宸, . 高温作用后3D打印岩体试样力学性能初探[J]. 岩土力学, 2020, 41(3): 961-969.
[8] 赵强, 焦玉勇, 张秀丽, 谢壁婷, 王龙, 黄刚海, . 基于显式时间积分的球颗粒DDA计算方法[J]. 岩土力学, 2019, 40(11): 4515-4522.
[9] 杨文保, 吴琪, 陈国兴, . 长江入海口原状土动剪切模量预测方法探究[J]. 岩土力学, 2019, 40(10): 3889-3896.
[10] 范文亮,王余乐,魏奇科,杨朋超,李正良, . 岩土工程可靠度分析的改进四阶矩方法[J]. , 2018, 39(4): 1463-1468.
[11] 黄明华,赵明华,陈昌富. 锚固长度对锚杆受力影响分析及其临界值计算[J]. , 2018, 39(11): 4033-4041.
[12] 熊自明,卢 浩,王明洋,钱七虎,戎晓力,. 我国大型岩土工程施工安全风险管理研究进展[J]. , 2018, 39(10): 3703-3716.
[13] 周海娟,马 刚,袁 葳,周 伟,常晓林, . 堆石颗粒压缩破碎强度的尺寸效应[J]. , 2017, 38(8): 2425-2433.
[14] 林 军,蔡国军,刘松玉,邹海峰, . 基于孔压静力触探力学分层的土体边界识别方法研究[J]. , 2017, 38(5): 1413-1423.
[15] 方砚兵,苏永华,肖 旺,梁 斌. 基于子区间法的隐式功能函数非概率可靠性方法研究[J]. , 2017, 38(4): 1171-1178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[3] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 康厚荣, ,雷明堂,张谢东,赵杰华. 贵州省公路工程岩溶环境区划[J]. , 2009, 30(10): 3032 -3036 .
[6] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[7] 颜天佑,李同春,赵兰浩,季薇薇. 三维边坡稳定分析的有限元弹塑性迭代解法[J]. , 2009, 30(10): 3102 -3108 .
[8] 李少龙,张家发,张 伟,肖 利. 表层土渗透系数空间变异与随机模拟研究[J]. , 2009, 30(10): 3168 -3172 .
[9] 孙文静,孙德安,孟德林. 饱和膨润土及其与砂混合物的压缩变形特性[J]. , 2009, 30(11): 3249 -3255 .
[10] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .