岩土力学 ›› 2021, Vol. 42 ›› Issue (11): 2967-2976.doi: 10.16285/j.rsm.2021.0635

• 基础理论与实验研究 • 上一篇    下一篇

考虑位移释放的横观各向同性冻胀 寒区隧道冻胀力弹塑性解答

张常光1, 2,高本贤3,李天斌2,单冶鹏4   

  1. 1. 长安大学 建筑工程学院,陕西 西安 710061; 2. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059; 3. 长安大学 公路学院,陕西 西安 710064;4. 北京交通大学 土木建筑工程学院,北京 100044
  • 收稿日期:2021-04-26 修回日期:2021-07-20 出版日期:2021-11-11 发布日期:2021-11-12
  • 作者简介:张常光,男,1982年生,博士,教授,主要从事非饱和土与地下工程等研究。
  • 基金资助:
    国家自然科学基金项目(No. 41202191);地质灾害防治与地质环境保护国家重点实验室开放基金项目(No. SKLGP2020K022);长安大学中央高校基本科研业务费专项资金项目(No. 300102280108)。

An elastic-plastic solution for frost heaving force of cold region tunnels considering transversely isotropic frost heave and displacement release

ZHANG Chang-guang1, 2, GAO Ben-xian3, LI Tian-bin2, SHAN Ye-peng4   

  1. 1. School of Civil Engineering, Chang’an University, Xi’an, Shaanxi 710061, China; 2. Stake Key Laboratory of Geohazard Prevetion and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 3. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 4. School of Civil Engineering and Architecture, Beijing Jiaotong University, Beijing 100044, China
  • Received:2021-04-26 Revised:2021-07-20 Online:2021-11-11 Published:2021-11-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41202191), the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP2020K022) and the Fundamental Research Funds for the Central Universities of Chang’an University (300102280108).

摘要: 综合考虑中间主应力、横观各向同性冻胀和围岩位移释放的影响,基于冻融圈整体冻胀模型建立了寒区隧道冻胀力的弹性解、塑性统一解以及塑性区半径的隐式计算方程,给出冻结围岩弹-塑性状态的判定方法,对所得结果进行可比性分析和对比验证,并探究各因素对冻胀力和塑性区半径的影响特性,借助支护施作时机量化了围岩位移释放的距离描述。研究表明:解答具有很好的可比性且被文献模型试验所验证;统一强度理论作为屈服准则可充分发挥冻结围岩的承载潜能,所得冻胀力和塑性区半径明显减小;不均匀冻胀系数和体积冻胀率对冻胀力和塑性区半径的影响显著,应考虑围岩横观各向同性冻胀特性并采取有效的防排水和保温抗冻措施;位移释放系数较小时冻胀力偏大、位移释放系数为1时塑性区半径最大,恰当的支护施作时机有利于隧道施工及运营安全。所得结果可为寒区隧道设计提供一定的理论指导。

关键词: 寒区隧道, 统一强度理论, 冻胀力, 位移释放系数, 横观各向同性冻胀

Abstract: The elastic solution and the unified plastic solution for the frost heaving force of tunnels in cold region as well as the implicit equation of plastic zone radius were proposed in this study based on the overall freeze-thaw circle frost heave model. The proposed solution can comprehensively account for the influences of the intermediate principal stress, the transverse isotropic frost heave and the displacement release of surrounding rock. Meanwhile, an approach was provided to determine the elastic-plastic state of frozen surrounding rock. Furthermore, comparability analysis and verification of the proposed solution were performed. The effects of various factors on the frost heaving force and plastic zone radius were investigated. Finally, the distance description of the surrounding rock displacement release was quantified through the supporting time. It was found that the proposed solution has good comparability and was verified by model tests in reference. As the yield criterion of frozen surrounding rock, the unified strength theory can fully make use of its bearing potentiality, the frost heaving force and plastic zone radius are decreased obviously. The frost heaving force and plastic zone radius are significantly affected by the anisotropic frost heave coefficient and the volume frost heave ratio. Therefore, it is necessary to consider the transverse isotropic frost heave of surrounding rock and take effective measures of tunnel waterproofing and drainage as well as insulation and frost resistance. The frost heaving force is large when the displacement release coefficient is small, while the plastic zone radius reaches its peak value when the displacement release coefficient reaches one. Therefore, a proper supporting time is beneficial to the safety of construction and operation for tunnels in cold region. The obtained results can provide some theoretical guidance for the design of tunnels in cold region.

Key words: cold region tunnel, unified strength theory, frost heaving force, displacement release coefficient, transversely isotropic frost heave

中图分类号: 

  • TU 457
[1] 乔趁, 王宇, 宋正阳, 李长洪, 侯志强, . 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(8): 2141-2150.
[2] 晏青, 赵均海, 张常光. 基于统一强度理论的临坡加筋地基极限承载力新解[J]. 岩土力学, 2021, 42(6): 1587-1600.
[3] 宋勇军, 杨慧敏, 张磊涛, 任建喜. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.
[4] 严健, 何川, 晏启祥, 许金华. 雀儿山隧道冰碛地层冻胀力原位测试及计算分析[J]. 岩土力学, 2019, 40(9): 3593-3602.
[5] 王凤云, 钱德玲, . 基于统一强度理论深埋圆形隧道围岩的剪胀分析[J]. 岩土力学, 2019, 40(5): 1966-1976.
[6] 邵生俊, 陈 菲, 邓国华, . 基于平面应变统一强度公式的结构性黄土填料 挡墙地震被动土压力研究[J]. 岩土力学, 2019, 40(4): 1255-1262.
[7] 夏才初,吕志涛,黄继辉,李 强, . 寒区隧道围岩最大冻结深度计算的半解析方法[J]. , 2018, 39(6): 2145-2154.
[8] 张玉伟,谢永利,李又云,赖金星,. 基于温度场时空分布特征的寒区隧道冻胀模型[J]. , 2018, 39(5): 1625-1632.
[9] 田亚护,胡康琼,邰博文,沈宇鹏,王腾飞,. 不同因素对排水沟渠水平冻胀力的影响[J]. , 2018, 39(2): 553-560.
[10] 黄诗冰,刘泉声,程爱平,刘艳章,. 低温岩体裂隙冻胀力与冻胀扩展试验初探[J]. , 2018, 39(1): 78-84.
[11] 张妍珺,苏 凯,周 利,伍鹤皋. 基于收敛-约束法的隧洞纵向变形演化规律研究与支护时机估算[J]. , 2017, 38(S1): 471-478.
[12] 曹雪叶,赵均海,张常光. 基于统一强度理论的冻结壁弹塑性应力分析[J]. , 2017, 38(3): 769-774.
[13] 柯锦福,吴爱祥,. 基于半隐式积分方案统一强度理论 ANSYS二次开发[J]. , 2017, 38(10): 3048-3052.
[14] 申艳军,杨更社,荣腾龙,刘 慧. 低温环境下含表面裂隙硬岩温度场及冻胀演化过程分析[J]. , 2016, 37(S1): 521-529.
[15] 刘泉声 ,黄诗冰 ,康永水 ,刘建平,. 裂隙冻胀压力及对岩体造成的劣化机制初步研究[J]. , 2016, 37(6): 1530-1541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 沈 扬,周 建,龚晓南,刘汉龙,. 考虑主应力方向变化的原状软黏土应力应变性状试验研究[J]. , 2009, 30(12): 3720 -3726 .
[2] 李利平,李术才,张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J]. , 2010, 31(2): 523 -528 .
[3] 张 文,王泽文,乐励华. 双重介质中的一类核素迁移数学模型及其反演[J]. , 2010, 31(2): 553 -558 .
[4] 李丽华,陈 轮,高盛焱. 翠湖湿地软土触变性试验研究[J]. , 2010, 31(3): 765 -768 .
[5] 胡亚元. 利用EVP模型确定堆载预压法的卸载时机[J]. , 2010, 31(6): 1827 -1832 .
[6] 章定文,韩文君,刘松玉. 初始应力各向异性状态下圆柱孔扩张机制分析[J]. , 2010, 31(S2): 104 -108 .
[7] 李克钢,侯克鹏,李 旺. 指标动态权重对边坡稳定性的影响研究[J]. , 2009, 30(2): 492 -496 .
[8] 洪 勇,孙 涛,栾茂田,郑孝玉,汪发武. 土工环剪仪的开发及其应用研究现状[J]. , 2009, 30(3): 628 -633 .
[9] 张乾兵,朱维申,李 勇,孙林锋,张 磊. 洞群模型试验中微型多点位移计的设计及应用[J]. , 2011, 32(2): 623 -628 .
[10] 李京爽,侯瑜京,徐泽平,梁建辉,张雪东,宋献慧. 砂土自由场地基水平垂直振动离心模拟试验[J]. , 2011, 32(S2): 208 -214 .