岩土力学 ›› 2022, Vol. 43 ›› Issue (3): 602-614.doi: 10.16285/j.rsm.2021.0764

• 基础理论与实验研究 • 上一篇    下一篇

管索组合结构及其力学性能研究

单仁亮,仝 潇,黄鹏程,原鸿鹄,鲍永生,刘 楠   

  1. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083
  • 收稿日期:2021-05-24 修回日期:2021-12-30 出版日期:2022-03-22 发布日期:2022-03-22
  • 通讯作者: 仝潇,男,1993年生,博士研究生,主要从事岩土工程方面的研究工作。E-mail: cumtbtx@126.com
  • 作者简介:单仁亮,男,1964年生,博士,教授,博士生导师,主要从事岩土工程、岩石力学方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金项目(No.51474218)

Research on the anchor cable combined with the c-shaped tube and the mechanical properties

SHAN Ren-liang, TONG Xiao, HUANG Peng-cheng, YUAN Hong-hu, BAO Yong-sheng, LIU Nan   

  1. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2021-05-24 Revised:2021-12-30 Online:2022-03-22 Published:2022-03-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51474218).

摘要: 为防止在巷道围岩中锚索发生剪切破断,进一步提高锚索的抗剪强度,自主研发的管索组合结构能更好地提高围岩的抗剪强度及稳定性,该结构主要由C型钢管和锚索组成。在详细介绍了管索组合结构支护结构的基础上,为了更好地研究管索组合结构的力学性能,利用自主研发的新型管索拉剪试验系统分别对不同类型、不同预应力、不同索径的管索组合结构及纯锚索进行了室内力学特性试验,分别从受力?剪切位移曲线特征、支护构件类型影响和支护结构破断模式等方面对比分析了试验结果。结果表明,管索组合结构在剪切过程中经历孔壁岩石自由变形、孔壁岩石压缩C型管、C型管握裹锚索共同变形3个阶段;管索组合结构的剪切破断形式表现为拉伸破断和拉剪复合破断,其峰值剪力与预紧力呈负相关,且与纯锚索相比,管索组合结构的剪切塑性铰的轴向距离较大,管索组合结构的最大剪力、最大轴力以及整体结构变形能力均得到提高,提升率分别达到26.8%、3.5%和7.0%以上。试验结果表明,采用管索组合结构可以有效提高结构面的整体抗剪能力。当围岩发生变形破坏时,锚索与C型钢管的组合结构不仅可以增加整个支护系统的抗剪强度,而且可以同时提高锚索的抗拔能力,从而实现锚索+C型钢管1+1>2的支护效果,在巷道周围组成有效的围岩承载圈,实现巷道围岩的稳定。

关键词: 管索组合结构, 锚索, 双剪试验, 剪切破断, 剪切强度

Abstract: In order to prevent the anchor cable from shearing and breaking in the surrounding rock of the roadway, and to further improve the shear strength of the anchor cable, we independently developed the anchor cables combined with the c-shaped tube (ACC), which can improve the shear strength and stability of the surrounding rock. The design is mainly composed of c-shaped tube and anchor cables. We first introduce the ACC support structure in detail. In order to better study the mechanical properties of ACC, the indoor mechanical properties tests of ACC and pure anchor cables have been carried out with different types, different prestresses and different cable diameters, with the help of the self-developed new type of anchor able with c-shaped tube tension-shear testing system. We compare and analyze the test results based on the characteristics of the force-shear displacement plot, the effects of the supporting member type, and the failure mode of the supporting structure. The results show that the anchor cable and its combined structure with c-shaped tube undergo three stages in the shearing process, which includes the free deformation of the bore-wall rock, the compression of the c-shaped steel tube by the bore-wall rock, and the joint deformation of the c-shaped tube wrapped with the anchor cable. The shear fracture of ACC is manifested as tensile fracture and tensile-shear composite fracture. Its peak shear force is negatively correlated with the pretension force. Compared with the pure anchor cable, the axial distance of the shear plastic hinge of ACC is larger. The maximum shear force, the maximum axial force and the overall structural deformation capacity of ACC have been improved by 26.8%, 3.5%, and 7%, respectively. The test results show that the use of ACC can effectively improve the overall shear resistance of the joint surface. When the surrounding rock is deformed and damaged, the combined structure of the anchor cable and the c-shaped steel cube can not only increase the shear strength of the entire supporting system, but also increase the tensile strength of the anchor cable at the same time. Therefore, the supporting effect of the anchor cable plus the c-shaped tube can achieve the fact where 1+1>2. The combination of two forms an effective surrounding rock bearing circle around the roadway, and the stability can be guaranteed for the surrounding rock of the roadway.

Key words: anchor cable with c-shaped tube (ACC), anchor cable, double shear test, shear failure, shear strength

中图分类号: 

  • TU451
[1] 宋磊博, 亢倩倩, 杜时贵, 钟振, 王刚, 王兴开, 韩观胜, 赵金帅, . 基于表面微凸体磨损特征演化规律的节 理剪切强度各向异性机制研究[J]. 岩土力学, 2021, 42(9): 2331-2343.
[2] 冯忠居, 江冠, 赵瑞欣, 龙厚胜, 王政斌, 张正旭, . 基于多因素耦合效应的锚索预应力长期损失研究[J]. 岩土力学, 2021, 42(8): 2215-2224.
[3] 范祥, 邓志颖, 崔志猛, 何忠明, 林杭, . 一种新的软−硬节理峰值剪切强度模型[J]. 岩土力学, 2021, 42(7): 1861-1870.
[4] 陶志刚, 任树林, 郝宇, 李强, 付强, 何满潮, . 层状反倾边坡破坏机制及NPR锚索控制效果 物理模型试验[J]. 岩土力学, 2021, 42(4): 976-990.
[5] 赖天文, 雷浩, 武志信, 吴红刚, . 玄武岩纤维增强复合材料在高边坡防护中的 振动台试验研究[J]. 岩土力学, 2021, 42(2): 390-400.
[6] 郭金刚, 李耀晖, 何富连, 陈见行, 赵光明, 张俊文, . 基于残余剪切强度的全长黏结锚杆拉拔模拟[J]. 岩土力学, 2021, 42(11): 2953-2960.
[7] 安彩龙, 梁 烨, 王亮清, 邓 姗, 孙自豪, 范斌强, 郑罗斌. 岩质边坡楔形体锚索加固方向角三维优化设计[J]. 岩土力学, 2020, 41(8): 2765-2772.
[8] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
[9] 樊科伟, 刘斯宏, 廖洁, 方斌昕, 王建磊, . 袋装石土工袋剪切力学特性试验研究[J]. 岩土力学, 2020, 41(2): 477-484.
[10] 李剑, 陈善雄, 余飞, 姜领发, 戴张俊. 预应力锚索加固高陡边坡机制探讨[J]. 岩土力学, 2020, 41(2): 707-713.
[11] 涂义亮, 刘新荣, 任青阳, 柴贺军, 王军保, 余佳玉. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928.
[12] 贾志波, 陶连金, 史明. 地震作用下预应力锚索边坡的稳定性分析[J]. 岩土力学, 2020, 41(11): 3604-3612.
[13] 杨庆光, 柳雄, 刘杰, 何杰, 梁凌川, 陈斌. 自由段先注浆对预应力锚索抗拔试验结果影响研究[J]. 岩土力学, 2020, 41(10): 3317-3325.
[14] 王成汤, 王浩, 张玉丰, 覃卫民, 闵弘, . 锚索抗滑桩加固堆积型滑坡的受力特性 模型试验与数值模拟研究[J]. 岩土力学, 2020, 41(10): 3343-3354.
[15] 李新明, 孔令伟, 郭爱国, . 南阳原状膨胀土不排水剪切性状时效性试验研究[J]. 岩土力学, 2019, 40(8): 2947-2955.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .