岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 43-51.doi: 10.16285/j.rsm.2021.1329
高峰1, 2,熊鑫1,熊信1,周科平1, 2
GAO Feng1, 2, XIONG Xin1, XIONG Xin1, ZHOU Ke-ping1, 2
摘要: 岩石的微波处理效果受诸多因素影响,其中水是一种良好的吸波介质,能提高岩石的微波吸收能力。为探索饱和度对微波照射后岩石响应特征的影响效果,以不同饱和度的玄武岩试样为研究对象,以升温特性、波速与孔隙度变化以及动态抗拉强度等为参考指标,开展了3 kW功率微波照射的破岩试验。从细观与宏观角度的分析结果表明:(1)水的存在影响了微波照射过程中岩样的升温特性,照射的前15 s内,饱和度低于75%组明显促进了升温速率,而饱和度达到100%则作用相反,升温速率低于干燥组;15~30 s随着含水率的减少与蒸发吸热,含水试样升温速率降低;30~45 s内水分蒸发完毕,含水试样的升温速率接近干燥试样。(2)饱和度差异导致玄武岩在微波照射后发生不同程度的波速与孔隙率的变化,波速降幅范围为8.18%~17%,孔隙率增长范围为18.71%~43.65%,损伤效果并未随饱和度升高而增强。(3)同样照射条件下,50%饱和度组在蒸汽压力和热应力共同作用下快速达到强度极限,试样直接发生破坏。其余组试样大多未发生明显细观损伤,最终动态抗拉强度差距不明显。
中图分类号:
[1] | 田虎楠, 唐巨鹏, 潘一山, 余泓浩, . 平均有效应力对煤系页岩瓦斯微观吸附−解吸 特性影响试验研究[J]. 岩土力学, 2022, 43(7): 1803-1815. |
[2] | 王海曼, 倪万魁, 刘魁, . 延安压实黄土土−水特征曲线的快速预测方法[J]. 岩土力学, 2022, 43(7): 1845-1853. |
[3] | 孔令明, 梁珂, 彭丽云. 比表面积对土冻结特征曲线影响的试验研究[J]. 岩土力学, 2021, 42(7): 1883-1893. |
[4] | 金爱兵, 巨有, 孙浩, 赵怡晴, 李海, 张舟, 陆通, . 相变储能充填体孔隙结构及强度劣化机制研究[J]. 岩土力学, 2021, 42(10): 2623-2633. |
[5] | 李甜果, 孔令伟, 王俊涛, 王凤华, . 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42(10): 2741-2754. |
[6] | 杨赫, 程卫民, 刘震, 王文玉, 赵大伟, 王文迪. 注水煤体有效渗流通道结构分形特征 核磁共振试验研究[J]. 岩土力学, 2020, 41(4): 1279-1286. |
[7] | 孟祥传, 周家作, 韦昌富, 张坤, 沈正艳, 杨周洁, . 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960. |
[8] | 马东东, 陈庆, 周辉, 滕起, 李科, 胡大伟, . 砂砾岩液态CO2破裂机制试验研究[J]. 岩土力学, 2020, 41(12): 3996-4004. |
[9] | 金爱兵, 王树亮, 魏余栋, 孙浩, 韦立昌, . 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020, 41(11): 3531-3539. |
[10] | 李杰林, 朱龙胤, 周科平, 刘汉文, 曹善鹏, . 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学, 2019, 40(9): 3524-3532. |
[11] | 王士权, 魏明俐, 何星星, 张亭亭, 薛 强, . 基于核磁共振技术的淤泥固化水分转化机制研究[J]. 岩土力学, 2019, 40(5): 1778-1786. |
[12] | 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970. |
[13] | 江强强, 刘路路, 焦玉勇, 王 浩, . 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012. |
[14] | 谢凯楠, 姜德义, 孙中光, 宋中强, 王静怡, 杨 涛, 蒋 翔, . 基于低场核磁共振的干湿循环对泥质砂岩 微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(2): 653-659. |
[15] | 吕擎峰, 周 刚, 王生新, 霍振升, 马 博, . 固化盐渍土核磁共振微观特征[J]. 岩土力学, 2019, 40(1): 245-249. |
|