岩土力学 ›› 2022, Vol. 43 ›› Issue (10): 2726-2734.doi: 10.16285/j.rsm.2021.2037

• 基础理论与实验研究 • 上一篇    下一篇

波动水力条件下土体内侵蚀特性的 透明土试验研究

邓泽之1, 2,吉恩跃1,王刚2   

  1. 1. 南京水利科学研究院 水利部土石坝破坏机理与防控技术重点实验室,江苏 南京 210024;2. 重庆大学 土木工程学院,重庆 400044
  • 收稿日期:2021-12-03 修回日期:2022-06-23 出版日期:2022-10-19 发布日期:2022-10-17
  • 通讯作者: 王刚,男,1978年生,博士,教授,主要从事土动力学、高坝大型结构和岩土工程数值分析方面的研究工作。E-mail: cewanggang@163.com E-mail:672012420@qq.com
  • 作者简介:邓泽之,男,1996年生,博士研究生,主要从事粗粒土渗透破坏研究。
  • 基金资助:
    水利部土石坝破坏机理与防控技术重点实验室开放研究基金(No. YK321005);重庆市研究生科研创新项目(No. CYS20021);重庆市自然科学基金(No. cstc2021 jcyj-msxmX0598)。

Experimental study on internal erosion behaviors under fluctuating hydraulic condition using transparent soil

DENG Ze-zhi1, 2, JI En-yue1, WANG Gang2   

  1. 1. Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210024, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400044, China
  • Received:2021-12-03 Revised:2022-06-23 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the Open Research Fund of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources (YK321005), the Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYS20021) and the Natural Science Foundation of Chongqing (cstc2021 jcyj-msxmX0598).

摘要: 在渗流作用下土中细粒随着水流在粗粒骨架间运移的现象被称为内侵蚀。以往对于内侵蚀的研究主要集中在恒定的水力梯度下,缺乏对于波动水力条件下内侵蚀发展特征和细观机制的认识。设计了透明土渗流试验装置,开展了恒定和波动水力条件下不同内部稳定性土体的渗流试验,以探究波动水力条件下内侵蚀的发展特征。宏观试验现象表明,对于内部稳定性较差型土,当水力梯度达到临界水力梯度后,波动水力条件下的渗透系数比恒定水力条件下呈现出更快的增长趋势,说明水力波动会加剧细颗粒的迁移和流失。为了进一步揭示波动水力条件加剧土体内侵蚀发展过程的细观机制,利用一种基于平面激光扫描的二维截面图像开发的土体细观组构三维重建方法,建立了粗粒骨架、内部孔隙通道和细颗粒的三维可视化数字模型。通过观察细粒在孔隙通道中的分布情况,发现恒定水力条件下,细粒在运移至狭窄的孔隙喉道处时会发生堵塞堆积现象;而波动水力条件下的水流扰动会破坏这种暂稳态的堵塞堆积结构,继而重启细颗粒的迁移过程。

关键词: 内侵蚀, 水力条件, 透明土, 三维重建, 细观机制

Abstract: Internal erosion is a phenomenon that fine particles migrate through the channels within coarse matrix under seepage flow. Previous studies mainly focused on the internal erosion under steady hydraulic gradient, while the behavior and mesoscopic mechanism of internal erosion under fluctuating hydraulic condition were paid little attention. In this study, a setup of transparent soil seepage test was developed. Seepage tests of two kinds of soils with different internal stabilities were conducted under steady and fluctuating hydraulic conditions respectively to investigate the internal erosion behaviors under fluctuating hydraulic condition. The macroscopic experimental phenomenon showed that, when the hydraulic gradient exceeded the critical hydraulic gradient, the increase of the hydraulic conductivity under fluctuating hydraulic condition was faster than that under steady hydraulic condition for internally unstable soil, manifesting that hydraulic fluctuation aggravated the migration of fines. In order to further reveal the mesoscopic mechanism, a three-dimensional reconstruction method was employed to rebuild the mesoscopic fabric of soil based on the two-dimensional cross-sectional images obtained by the planar laser scanning; and a three-dimensional visualization digital model including coarse matrix, inter-granular pore channels and fine particles was established. By observing the distribution of fine particles in pore channels, it was found that fine particles might clog and accumulate at narrow pore throats under steady seepage. While the perturbation caused by hydraulic fluctuation could break these weak stable structures of clog and accumulation, and then restart the migration process of fine particles.

Key words: internal erosion, hydraulic condition, transparent soil, 3D reconstruction, mesoscopic mechanism

中图分类号: 

  • TU 411.4
[1] 阙云, 翁斌, 蔡松林, LIU Jin-yuan, . 非饱和透明土优先流迁移规律分析[J]. 岩土力学, 2022, 43(4): 857-867.
[2] 赵红华, 刘聪, 唐小微, 魏焕卫, 朱丰, . 基于透明土和三维重构技术的空间变形可视 化测量系统的研究[J]. 岩土力学, 2020, 41(9): 3170-3180.
[3] 张传庆, 刘振江, 张春生, 周辉, 高阳, 侯靖, . 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496.
[4] 周东, 刘汉龙, 仉文岗, 丁选明, 杨昌友, . 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686-2694.
[5] 李晓照, 戚承志, 邵珠山, 屈小磊, . 基于细观力学脆性岩石剪切特性演化模型研究[J]. 岩土力学, 2019, 40(4): 1358-1367.
[6] 周航, 袁井荣, 刘汉龙, 楚剑, . 矩形桩沉桩挤土效应透明土模型试验研究[J]. 岩土力学, 2019, 40(11): 4429-4438.
[7] 孔纲强,李 辉,王忠涛,文 磊,. 透明砂土与天然砂土动力特性对比[J]. , 2018, 39(6): 1935-1940.
[8] 刘嘉英,马 刚,周 伟,常晓林, . 抗转动特性对颗粒材料分散性失稳的影响研究[J]. , 2017, 38(5): 1472-1480.
[9] 常 艳,雷振坤,赵红华,于绅坤, . 熔融石英粒径对透明土位移测量精度的影响[J]. , 2017, 38(2): 493-500.
[10] 周俊宏,宫全美,周顺华,韩高孝, . 盾构隧道抬升作用下极限上覆土压力计算方法[J]. , 2016, 37(7): 1969-1976.
[11] 孔纲强 ,孙学谨 ,曹兆虎 ,周 杨 , . 楔形桩和等截面桩中性点位置可视化对比模型试验[J]. , 2015, 36(S1): 38-42.
[12] 孔纲强 ,曹兆虎 ,周 航 ,邓宗伟 ,郭尤林,. 极限荷载下纵向截面异形桩破坏形式对比模型试验研究[J]. , 2015, 36(5): 1333-1338.
[13] 曹兆虎 ,孔纲强 ,周 航 ,耿之周,. 基于透明土的静压楔形桩沉桩效应模型试验研究[J]. , 2015, 36(5): 1363-1367.
[14] 齐昌广 ,范高飞 ,崔允亮 ,张 强,. 利用人工合成透明土的岩土物理模拟试验[J]. , 2015, 36(11): 3157-3163.
[15] 王 刚 ,杨鑫祥 ,张孝强 ,薛 娇 ,李文鑫,. 基于CT三维重建与逆向工程技术的煤体数字模型的建立[J]. , 2015, 36(11): 3322-3328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .