岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1375-1384.doi: 10.16285/j.rsm.2022.0885

• 基础理论与实验研究 • 上一篇    下一篇

砂土地基中桩顶竖向-水平加载路径下柔性单桩水平承载力分析

江杰1, 2, 3,付臣志2,柴文成2,欧孝夺1, 2, 3   

  1. 1. 广西大学 工程防灾与结构安全教育部重点实验室,广西 南宁 530004; 2. 广西大学 土木建筑工程学院,广西 南宁 530004;3. 广西大学 防灾减灾与工程安全重点实验室,广西 南宁 530004
  • 收稿日期:2022-06-13 接受日期:2022-09-28 出版日期:2023-05-09 发布日期:2023-04-30
  • 作者简介:江杰,男,1979年生,博士后,研究员,主要从事桩基工程理论与应用研究。
  • 基金资助:
    国家自然科学基金项目(No. 52068004);广西大学学科交叉科研项目(No. 2022JCB012);广西重点研发计划项目(No. AB19245018).

Analysis of lateral bearing capacity of flexible single pile under vertical-horizontal loading path in sand foundation

JIANG Jie1, 2, 3, FU Chen-zhi2, CHAI Wen-cheng2, OU Xiao-duo1, 2, 3   

  1. 1. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China; 2. School of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China; 3. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning, Guangxi 530004, China
  • Received:2022-06-13 Accepted:2022-09-28 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52068004), the Interdisciplinary Scientific Research Foundation of Guangxi University (2022JCB012) and the Key Research Projects of Guangxi (AB19245018).

摘要: 砂土地基中桩顶竖向-水平加载路径下单桩水平承载理论研究较少,且鲜有考虑预先施加的竖向荷载对土抗力p与桩身水平位移y曲线的影响。鉴于此,考虑桩顶预先施加的竖向力对桩周土体产生挤密作用,从而对双曲线型p-y曲线的极限土抗力进行修正。采用余弦函数表征被动侧径向土压力分布,构建了被动侧最大径向土压力与总土抗力的关系式,推导了被动侧的侧阻抗力矩解析表达式。考虑被动侧摩阻力与竖直方向存在夹角 对由摩阻力引起的桩身轴力变化量进行修正,给出了修正计算公式。建立了同时考虑修正的 p-y 曲线、桩身自重和被动侧摩阻力引起的轴力变化量、二阶效应(即 p-Δ效应)以及侧阻抗力矩的桩身挠曲微分方程,通过 MATLAB 编程求得其数值解。将计算结果与已有模拟和试验结果进行比较,验证了该方法的正确性。在此基础上,探讨了预先施加的竖向力大小对单桩水平承载性能的影响。计算结果表明:推导的桩身轴力变化量计算公式能更准确地表征被动侧摩阻力对桩身轴力的影响,且可用于大变形条件;预先施加的竖向力可以增大柔性单桩的水平承载力,随着预先施加的竖向力的增大,增强效果逐渐减弱。

关键词: 砂土地基, 柔性单桩, 竖向-水平加载路径, 水平承载力, 数值解

Abstract: There are few theoretical studies on lateral bearing capacity of flexible single pile under vertical-horizontal loading path in sand foundation and the influence of pre-applied vertical load on p-y curve is rarely considered. In view of this, the ultimate soil resistance of hyperbolic p-y curve was modified accounting for compacting effect of the sandy soil around the pile under the vertical force applied in advance. Cosine function was used to characterize the distribution of radial earth pressure on the passive side. The relationship between the maximum radial earth pressure on the passive side and the total soil resistance was proposed, and the analytical expression of the shaft resisting moment on the passive side was derived. Taking an included angle β  between the direction of friction resistance and the vertical direction into account, the variation of pile axial force induced by friction resistance was corrected and its computational formula was obtained. The differential equation of pile deflection was established considering the modified p-y curve, the variation of axial force caused by pile dead weight and friction resistance, the P-Δ effect and the shaft resisting moment. The numerical solution was obtained by MATLAB program. The correctness of the proposed method was verified by comparing the calculated results with the existing simulations and measurements. On this basis, the influence of vertical force applied in advance on lateral bearing capacity of single pile was discussed. The results show that the computational formula of the variation of pile axial force deduced in this paper can more accurately describe the influence of friction resistance on pile axial force and can be used for large deformation conditions. The vertical force applied in advance can enhance the lateral bearing capacity of flexible single pile. The enhancement gradually decreases with the increase of the vertical force applied in advance.

Key words: sand foundation, flexible single pile, vertical-horizontal loading path, lateral bearing capacity, numerical solution

中图分类号: 

  • TU 473
[1] 刘志鹏, 孔纲强, 文磊, 王志华, 秦红玉, . 砂土地基中倾斜螺旋桩群桩上拔与水平 承载特性模型试验[J]. 岩土力学, 2021, 42(7): 1944-1950.
[2] 张玉, 李大勇, 梁昊, 张雨坤, . 风电空心锥形基础水平承载特性 及土压力分布规律模型试验研究[J]. 岩土力学, 2021, 42(5): 1404-1412.
[3] 万志辉, 戴国亮, 龚维明, 高鲁超, 徐艺飞, . 钙质砂后压浆桩水平承载性状模型试验研究[J]. 岩土力学, 2021, 42(2): 411-418.
[4] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
[5] 邱金伟, 蒲诃夫, 陈训龙, 吕伟东, 李磊. 污染泥堆场处置中自重固结 与污染物迁移的耦合分析[J]. 岩土力学, 2019, 40(8): 3090-3098.
[6] 李连祥,符庆宏,黄佳佳, . 砂土地基和粉质黏土地基基坑悬臂开挖离心模型试验[J]. , 2018, 39(2): 529-536.
[7] 任非凡, 何江洋, 王 冠, 赵其华, . 基于交变移动本构模型的粗粒土 动力特性数值解析[J]. 岩土力学, 2018, 39(12): 4627-4641.
[8] 任连伟,顾红伟,彭怀风,周 杨,. 三种工况下扩底楔形桩承载特性模型试验研究[J]. , 2017, 38(7): 1887-1893.
[9] 冯 君,张俊云,朱 明,江 南,. 软土地层高承台桥梁群桩基础横向承载特性研究[J]. , 2016, 37(S2): 94-104.
[10] 蒋 欢 ,王水林 ,王万军,. 一种求解应变软化岩体中球腔问题的数值方法[J]. , 2016, 37(S2): 697-705.
[11] 侯胜男. 上海地区单桩水平承载力的若干影响因素研究[J]. , 2015, 36(S2): 565-570.
[12] 钱 铮,王奎华. 静钻根植桩水平承载性能试验研究[J]. , 2015, 36(S2): 588-594.
[13] 施 峰 ,郝世龙 , . PHC管桩水平承载力试验研究[J]. , 2015, 36(S2): 617-622.
[14] 彭芳乐 ,史文政 ,谭 轲,. 砂土地基的黏性特性及其有限元模拟[J]. , 2015, 36(S2): 648-654.
[15] 刘金龙 ,陈陆望 ,王吉利 ,汪东林,. 海上风机分段斜壁桶形基础的水平承载力计算方法[J]. , 2015, 36(10): 2750-2758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵春彦,周顺华,袁建议. 基于一维和三维固结挤土桩沉降时效计算分析[J]. , 2009, 30(9): 2629 -2632 .
[2] 杨 涛,周德培,马惠民,张忠平. 滑坡稳定性分析的点安全系数法[J]. , 2010, 31(3): 971 -975 .
[3] 李文培,王明洋,范鹏贤. 基于间断位移场的隧道围岩承载能力研究[J]. , 2010, 31(8): 2441 -2447 .
[4] 张菊连,沈明荣. 基于逐步判别分析的砂土液化预测研究[J]. , 2010, 31(S1): 298 -302 .
[5] 彭明祥. 挡土墙主动土压力的库仑统一解[J]. , 2009, 30(2): 379 -386 .
[6] 羊 晔,刘松玉,邓永锋. 加筋路基处治不均匀沉降模型试验研究[J]. , 2009, 30(3): 703 -706 .
[7] 郑 刚,颜志雄,雷华阳,王晟堂. 天津市区第一海相层粉质黏土卸荷路径下强度特性的试验研究[J]. , 2009, 30(5): 1201 -1208 .
[8] 戴洪军,刘欣良,任治军,韦 华. 圆形煤场中桩-网复合地基原体试验研究[J]. , 2011, 32(2): 487 -494 .
[9] 谢永健,王怀忠,朱合华. 软黏土中PHC管桩打入过程中土塞效应研究[J]. , 2009, 30(6): 1671 -1675 .
[10] 姜清辉,邓书申,周创兵. 有自由面渗流分析的三维数值流形方法[J]. , 2011, 32(3): 879 -884 .