岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 489-501.doi: 10.16285/j.rsm.2023.0241

• 基础理论与实验研究 • 上一篇    下一篇

顺倾及反倾层状碎裂结构斜坡地震反应的大型振动台试验研究

王通1, 2,刘先峰1, 2, 3,袁胜洋1, 2,蒋关鲁1, 2,胡金山4,邵珠杰4,田士军4   

  1. 1. 西南交通大学 土木工程学院,四川 成都 610031;2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031; 3. 新疆工程学院 土木工程学院,新疆 乌鲁木齐 830023;4. 中铁第一勘察设计院集团有限公司,陕西 西安 710043
  • 收稿日期:2023-02-27 接受日期:2023-04-23 出版日期:2024-02-11 发布日期:2024-02-07
  • 通讯作者: 刘先峰,男,1980年生,博士,教授,博士生导师,主要从事环境岩土工程方面的研究。E-mail: Xianfengliu@swjtu.edu.cn
  • 作者简介:王通,男,1995年生,博士研究生,主要从事艰险山区边坡灾害防治方面的研究工作。wangtonglw@163.com
  • 基金资助:
    中铁第一勘察设计院集团有限公司科研项目(No.20-06)。

Large-scale shaking table test on the seismic response of dip and anti-dip layered fractured structural slopes

WANG Tong1, 2, LIU Xian-feng1, 2, 3, YUAN Sheng-yang1, 2, JIANG Guan-lu1, 2, HU Jin-shan4, SHAO Zhu-jie4, TIAN Shi-jun4   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. School of Civil Engineering, Xinjiang Institute of Engineering, Urumqi, Xinjiang 830023, China; 4. China Railway First Survey and Design Institute Group Co., Ltd., Xi’an, Shaanxi 710043, China
  • Received:2023-02-27 Accepted:2023-04-23 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the Scientific Research Project of China Railway First Survey and Design Institute Group Co., Ltd. (20-06).

摘要: 西南艰险山区分布着大量的不同倾向的层状碎裂结构斜坡,地震作用下极易发生崩塌、滑坡等灾害,对在建的川藏铁路造成严重威胁。通过大型振动台模型试验,研究了强震条件下顺倾、反倾层状碎裂结构斜坡的动力响应、失稳破坏模式以及能量传递规律。试验结果表明:反倾斜坡的抗震性能显著优于顺倾斜坡;顺倾斜坡的破坏模式主要为拉裂−剪切−隆起−滑移型破坏,反倾斜坡的破坏模式主要为拉伸−弯曲−倾倒−崩塌型破坏;反倾斜坡的自振频率高于顺倾斜坡,顺倾斜坡的自振频率随震级的增加而逐渐降低,而反倾斜坡的自振频率在地震波幅值为0.4g~0.7g时出现反复震荡现象;顺倾斜坡存在明显的高程放大效应和趋表效应,反倾斜坡存在高程放大效应,其内部的加速度响应大于坡表。边际谱识别显示:顺倾斜坡的边际谱幅值(peak of marginal spectrum amplitude,简称PMSA)突变在坡腰上部最显著,说明该位置附近地震波的能量损失最大,反映出顺倾斜坡在坡腰上部附近形成了滑动破坏面;反倾斜坡的PMSA在坡肩处降低得最为显著,反映出坡肩部位损伤最为严重,易发生局部崩塌破坏。分析结果与试验现象能够较好地吻合,进一步揭示了不同结构类型层状碎裂结构斜坡在强震作用下的动力响应与失稳破坏模式,为川藏铁路的安全建设提供了依据。

关键词: 顺倾斜坡;反倾斜坡;振动台试验;地震加速度峰值(peak ground acceleration, 简称PGA)放大系数;破坏模式;损伤识别

Abstract: In the challenging and perilous mountainous regions of Southwest China, there are numerous layered and fractured rock slopes with varying inclinations. These slopes are prone to disasters such as collapses and landslides during earthquakes, posing a serious threat to the ongoing construction of the Sichuan-Xizang Railway. To address this issue, large-scale shaking table model tests were conducted to study the dynamic response, failure modes of instability, and energy transfer characteristics of dip and anti-dip layered slopes under strong earthquake conditions. The test results reveal that the anti-seismic performance of anti-dip slopes is significantly better than that of dip slopes. The failure mode of dip slopes primarily involves tensile cracking, shearing, uplift, and slip failure. On the other hand, the failure mode of anti-dip slopes mainly consists of tensile, bending, tilting, and collapsing failure. The natural vibration frequency of anti-dip slopes is higher compared to dip slopes. As the earthquake magnitude increases, the natural frequency of dip slopes gradually decreases. However, the natural frequency of anti-dip slopes exhibits repeated oscillations within the range of seismic amplitudes of from 0.4g to 0.7g. Dip slopes exhibit clear “elevation amplification effect” and “tend-surface effect,” while anti-dip slopes demonstrate the “elevation amplification effect.” Furthermore, the internal acceleration response is greater than that of the slope surface. Marginal spectrum identification indicates that the most significant change in peak of marginal spectrum amplitude (PMSA) for dip slopes occurs at the upper part of the slope waist. This suggests that the energy loss of seismic waves near this position is the largest, indicating the formation of a sliding failure surface near the upper part of the slope waist. For anti-dip slopes, the PMSA decreases most significantly at the slope shoulder, indicating severe damage and a propensity for local collapse in this area. The analysis results are in good agreement with the experimental observations, providing further insights into the dynamic response and instability failure modes of different structural types of layered slopes under strong earthquakes. These findings serve as a basis for ensuring the safe construction of the Sichuan-Xizang Railway.

Key words: dip slope, anti-dip slope, shaking table test, peak ground acceleration (PGA) amplification coefficient, failure mode, damage identification

中图分类号: 

  • TU45
[1] 余云燕, 丁小刚, 马丽娜, 崔文豪, 杜乾中. 微膨胀泥岩地基原位水分入渗响应特征试验研究[J]. 岩土力学, 2024, 45(3): 647-658.
[2] 刘汉香, 叶刁瑜, 别鹏飞, 朱星, . 循环加卸载过程中灰岩微细观损伤特征的试验研究[J]. 岩土力学, 2024, 45(3): 685-696.
[3] 王培涛, 黄浩, 张博, 王路军, 杨毅, . 基于3D打印的粗糙结构面模型表征及渗流特性试验研究[J]. 岩土力学, 2024, 45(3): 725-736.
[4] 刘勇斌, 张晓平, 李馨芳, 李德宏, 陈广军, 刘小波, 熊雪飞, 杨朗, 李玉生, . 基于冲击回转钻进的岩石强度随钻识别研究[J]. 岩土力学, 2024, 45(3): 857-866.
[5] 张旭, 盛建龙, 叶祖洋, 周新, . 有自由面的裂隙网络稳定渗流试验与数值分析[J]. 岩土力学, 2024, 45(3): 878-884.
[6] 茹文凯, 胡善超, 李地元, 马金银, 张晨曦, 罗平框, 弓昊, 周奥辉, . 煤岩组合体卸围压能量演化规律及耗散能损伤本构模型研究[J]. 岩土力学, 2023, 44(12): 3448-3458.
[7] 贺桂成, 唐孟媛, 李咏梅, 李春光, 张志军, 伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究[J]. 岩土力学, 2023, 44(12): 3459-3470.
[8] 胡南燕, 黄建彬, 罗斌玉, 李雪雪, 陈敦熙, 曾子懿, 付晗, 娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究[J]. 岩土力学, 2023, 44(12): 3471-3480.
[9] 田霄, 叶祖洋, 罗旺, . 岩体裂隙几何结构对其渗流传热特性的影响[J]. 岩土力学, 2023, 44(12): 3512-3521.
[10] 王祖乐, 孔德琼, 杜越明, 朱斌, . 岩土工程连续极限分析方法拓展与验证[J]. 岩土力学, 2023, 44(12): 3531-3540.
[11] 李国枭, 王航龙, 彭俊, 王林飞, 代碧波, . 基于Hoek-Brown准则的层理岩石强度模型研究[J]. 岩土力学, 2023, 44(12): 3541-3550.
[12] 陈显辉, 程毅, 谢欣玥, 陈蜜蜜. 基于纳米压痕试验的大理岩宏微观力学参数关联性研究[J]. 岩土力学, 2023, 44(12): 3551-3564.
[13] 张治国, 罗杰, 朱正国, PAN Y T, 孙苗苗, . 强降雨影响下盾构隧道开挖面稳定性的三维对数螺旋模型上限解[J]. 岩土力学, 2023, 44(12): 3587-3601.
[14] 宋勇军, 孙银伟, 李晨婧, 杨慧敏, 张磊涛, 谢丽君, . 基于离散元法模拟的冻融砂岩细观破裂演化特征研究[J]. 岩土力学, 2023, 44(12): 3602-3616.
[15] 张培森, 许大强, 李腾辉, 胡昕, 赵成业, 侯季群, 牛辉, . 裂隙砂岩注浆前后渗流特性及注浆后 力学特性试验研究[J]. 岩土力学, 2023, 44(S1): 12-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[3] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[4] 胡 伟,黄 义,刘增荣. 循环荷载下饱和黄土不排水强度退化规律试验与理论研究[J]. , 2009, 30(10): 2996 -3000 .
[5] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[6] 郭军辉,程卫国,张 滨. 土工格栅低温下蠕变特性试验研究[J]. , 2009, 30(10): 3009 -3012 .
[7] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[8] 赵明华,刘小平,黄立葵. 降雨作用下路基裂隙渗流分析[J]. , 2009, 30(10): 3122 -3126 .
[9] 张家发,定培中,张 伟,胡智京. 水布垭面板堆石坝垫层料渗透与渗透变形特性试验研究[J]. , 2009, 30(10): 3145 -3150 .
[10] 定培中,周 密,张 伟. 混凝土浇筑施工对穿黄隧洞衬砌垫层渗透性影响试验研究[J]. , 2009, 30(10): 3159 -3162 .