岩土力学 ›› 2023, Vol. 44 ›› Issue (12): 3459-3470.doi: 10.16285/j.rsm.2022.1990

• 基础理论与实验研究 • 上一篇    下一篇

改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究

贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲   

  1. 南华大学 资源环境与安全工程学院,湖南 衡阳 421001
  • 收稿日期:2022-12-22 接受日期:2023-04-04 出版日期:2023-12-20 发布日期:2023-12-21
  • 通讯作者: 李咏梅,女,1990年生,博士,讲师,主要从事溶浸采矿方面的教学和科研工作。E-mail: lymusa8866@usc.edu.cn E-mail:hegc9210@163.com
  • 作者简介:贺桂成,男,1977年生,博士,教授,博士生导师,主要从事铀矿采冶方面的教学与科研工作。
  • 基金资助:
    国家重点研发计划项目(No.2021YFC2902104);国家自然科学基金(No.52274127,No.51974163);湖南省教育厅科学研究优秀青年项目(No.20B494,No.22B0430)。

Experiment on the impermeability of uranium tailings treated by microbial induced calcium carbonate precipitation combined with modified jute fiber

HE Gui-cheng, TANG Meng-yuan, LI Yong-mei, LI Chun-guang, ZHANG Zhi-jun, WU Ling-ling   

  1. School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
  • Received:2022-12-22 Accepted:2023-04-04 Online:2023-12-20 Published:2023-12-21
  • Supported by:
    This work was supported by the National Key R&D Program of China (2021YFC2902104), the National Natural Science Foundation of China (52274127, 51974163) and the Scientific Research Foundation for the Excellent Youth Scholars of Education Bureau of Hunan Province (20B494, 22B0430).

摘要: 利用改性黄麻纤维联合微生物诱导碳酸钙沉淀(microbial induced calcium carbonate precipitation,MICP)技术能有效胶结充填铀尾砂中的孔隙,提高堆浸铀尾砂的抗渗性能。通过研究铀尾砂的颗粒级配、胶结液浓度以及改性黄麻纤维的长度、质量含量和水热处理时间等因素对改性纤维联合微生物胶结铀尾砂的渗透系数的影响,获取最优的胶结参数;采用扫描电镜和X射线衍射仪等测试设备,表征了改性黄麻纤维联合MICP胶结铀尾砂形成的碳酸钙晶体的结构类型,分析其抗渗机制。研究结果表明:经水热处理后的纤维表面粗糙度增大,为微生物提供更多的附着场所,促进了微生物在铀尾砂中的生长、繁殖、迁移和固定,增加了碳酸钙晶体的生成量,提高了碳酸钙沉淀的均匀性,降低了铀尾砂的渗透系数;在颗粒级配编号为A3的铀尾砂中,改性纤维联合MICP胶结后的铀尾砂的渗透系数大幅降低,且纤维长度为20 mm、纤维质量含量为0.5%、纤维水热处理时间为2 h、胶结液浓度为2 mol/L时,经过11轮注浆后铀尾砂的渗透系数降低了99%,此时的参数是最优的;改性纤维联合MICP胶结铀尾砂生成的碳酸钙晶体在衍射角2θ 分别为23º、29.4º、36º、39.3º等多个位置出现方解石特征峰,此时的晶体结构为方解石。

关键词: 铀尾砂, 改性黄麻纤维, 微生物诱导碳酸钙沉淀, 渗透系数, 抗渗性能

Abstract:

Microbial induced calcium carbonate precipitation (MICP) technology combined with modified jute fiber can effectively cement the uranium tailings and fill the pore between the particles, thus, improve the impermeability of uranium tailings. In this study, the effects of some parameters, such as particle gradation, concentration of cementing solution, as well as the length, mass content and hydrothermal treatment time of modified jute fiber, on the impermeability of uranium tailings cemented by microbe in coordination with modified fiber were studied, and the best values of these parameters were determined. Then, the structure type of calcium carbonate crystal produced by MICP and modified fiber was analyzed using the scanning electron microscope (SEM) and X-ray diffraction (XRD), in order to analyze the impermeability mechanism. The results showed that the modified fibers provided more spots for bacterial adhesion, due to the increased surface roughness by hydrothermal treatment. This promoted the growth, reproduction, migration and fixation of microorganisms in uranium tailings, increased the uniformity of calcium carbonate precipitation, and decreased the permeability coefficient of uranium tailings. In the case of gradation number A3, the permeability coefficient of the cemented tailings decreased sharply. When the fiber length, fiber mass content, hydrothermal treatment time of fiber and the cementing solution concentration were 20 mm, 0.5%, 2 h and 2 mol/L, respectively, the permeability coefficient of uranium tailings decreased by 99% after 11 rounds of bio-grouting, indicating these values are optimal. The calcium carbonate crystal, formed in the cemented uranium tailings by the modified fiber combined with MICP, presented calcite characteristic peaks at diffraction angles 2θ of 23º, 29.4º, 36º, 39.3º, which demonstrated that the crystal is mainly calcite.

Key words: uranium tailings, modified jute fiber, microbial induced calcium carbonate precipitation, permeability coefficient, impermeability

中图分类号: 

  • O 319.56,TU451
[1] 李品良, 许强, 刘佳良, 何攀, 纪续, 陈婉琳, 彭大雷, . 盐分影响重塑黄土渗透性的微观机制试验研究[J]. 岩土力学, 2023, 44(增刊): 504-512.
[2] 吴广水, 田慧会, 郝丰富, 王书齐, 杨文洲, 祝婷梅, . 基于核磁共振T2时间分布快速预测不同干密度土体的渗透系数[J]. 岩土力学, 2023, 44(增刊): 513-520.
[3] 何涛, 毛海涛, 张超, 谷易. 浑水渗流对黏性土内贯穿性裂缝修复演化研究[J]. 岩土力学, 2023, 44(9): 2628-2638.
[4] 蔚立元, 杨瀚清, 王晓琳, 刘日成, 王蓥森. 循环剪切作用下三维粗糙裂隙非线性渗流特性数值模拟研究[J]. 岩土力学, 2023, 44(9): 2757-2766.
[5] 张宇, 何想, 路桦铭, 马国梁, 刘汉龙, 肖杨, . 微生物-膨润土联合矿化防渗模型试验研究[J]. 岩土力学, 2023, 44(8): 2337-2349.
[6] 文少杰, 郑文杰, 胡文乐, . 铅污染对黄土宏观持水性能和微观结构演化的影响研究[J]. 岩土力学, 2023, 44(2): 451-460.
[7] 刘宜昭, 陆阳, 刘松玉, . 重金属作用下改性水泥系隔离墙化学相容性研究[J]. 岩土力学, 2023, 44(2): 497-506.
[8] 郑思维, 胡明鉴, 霍玉龙, 黎宇, . 盐溶液环境下钙质砂渗透性影响因素分析[J]. 岩土力学, 2023, 44(12): 3522-3530.
[9] 侯娟, 张金榜, 孙银玉, 孙瑞, 刘飞禹. 颗粒膨胀对膨润土复合衬垫防渗性能的影响及 介观机制分析[J]. 岩土力学, 2023, 44(10): 3039-3048.
[10] 喻成成, 卢正, 姚海林, 刘杰, 詹永祥, . 微生物诱导碳酸钙沉淀改性膨胀土试验研究[J]. 岩土力学, 2022, 43(S1): 157-163.
[11] 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366.
[12] 贺桂成, 谢元辉, 李咏梅, 李春光, 唐孟媛, 张志军, 伍玲玲. 微生物胶结砂岩型铀矿砂的抗渗性能试验研究[J]. 岩土力学, 2022, 43(9): 2504-2514.
[13] 张小燕, 张益, 张晋勋, 魏凯园, 王宁, . 含橡胶纤维钙质砂的渗透和固结特性试验研究[J]. 岩土力学, 2022, 43(8): 2115-2122.
[14] 王海曼, 倪万魁. 不同干密度压实黄土的饱和/非饱和渗透 系数预测模型[J]. 岩土力学, 2022, 43(3): 729-736.
[15] 李驰, 田蕾, 董彩环, 张永锋, 王燕星, . MICP技术联合多孔硅吸附材料对锌铅 复合污染土固化/稳定化修复的试验研究[J]. 岩土力学, 2022, 43(2): 307-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .