岩土力学 ›› 2023, Vol. 44 ›› Issue (10): 3039-3048.doi: 10.16285/j.rsm.2023.0712

• 数值分析 • 上一篇    下一篇

颗粒膨胀对膨润土复合衬垫防渗性能的影响及 介观机制分析

侯娟1, 2, 3,张金榜1,孙银玉1,孙瑞1,刘飞禹1   

  1. 1. 上海大学 力学与工程科学学院,上海 201900;2. 青海大学 土木工程学院,青海 西宁 810016; 3. 弗吉尼亚大学 工程学院,弗吉尼亚州 夏洛茨维尔 22904 美国
  • 收稿日期:2023-06-03 接受日期:2023-07-12 出版日期:2023-10-13 发布日期:2023-10-16
  • 作者简介:侯娟,女,1975年生,博士,教授,主要从事环境岩土工程、填埋场膨润土垫的理论以及工程应用等方面的研究。
  • 基金资助:
    国家自然科学基金(No.51978390,No.51778353);青海省二〇二三年基础研究计划项目(No.2023-ZJ-756);国家留学基金(No.CSC201906895014)

Effect of particle swelling on hydraulic performance and meso-mechanism of geosynthetic clay liners

HOU Juan1, 2, 3, ZHANG Jin-bang1, SUN Yin-yu1, SUN Rui1, LIU Fei-yu1   

  1. 1. College of Mechanics and Engineering Science, Shanghai University, Shanghai 201900, China; 2. School of Civil Engineering, Qinghai University, Xining, Qinghai 810016, China; 3. School of Engineering, University of Virginia, Charlottesville, VA 22904, USA
  • Received:2023-06-03 Accepted:2023-07-12 Online:2023-10-13 Published:2023-10-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978390, 51778353), the Basic Research Project of Qinghai Province in 2003 (2023-ZJ-756) and the China Scholarship Foundation (CSC201906895014).

摘要: 膨润土复合衬垫(geosynthetic clay liners,GCL)的防渗性能与膨润土颗粒水化后的多孔介质特性密切相关。通过建立去离子水环境下颗粒尺度GCL渗流的COMSOL数值计算模型,量化研究了颗粒膨胀对GCL有效孔隙率、迂曲度以及渗透系数的影响。研究结果表明,介观尺度膨润土颗粒的膨胀是影响GCL整体有效孔隙率、迂曲度及最终渗透系数的关键因素。膨润土颗粒膨胀会明显影响流径数量及流径通道宽度。当GCL的渗透系数接近1011 m/s量级时,存在一条明显的主流径,初始孔隙率从0.5上升至0.6时,颗粒膨胀后的有效孔隙率从0.07上升至0.11,最小流径通道的宽度约为0.001 mm,大约为水分子的2 500倍。随着膨润土颗粒的膨胀,GCL内主流径迂曲度逐渐增加。当初始细颗粒直径为0.1 mm,初始孔隙率从0.5增加至0.6时,GCL内主流径迂曲度在1.2~1.4之间,但所有初始孔隙率下的主流径迂曲度变化范围在0.07左右。同时,渗透系数接近1011 m/s量级时,膨润土颗粒膨胀对GCL渗透系数的影响非常显著,当孔隙膨胀率大于0.96后,孔隙膨胀率增加了0.01,GCL的渗透系数会迅速下降一个数量级。

关键词: 膨润土复合衬垫, 颗粒膨胀, 渗透系数, 有效孔隙率, 迂曲度

Abstract:

The hydraulic performance of geosynthetic clay liners (GCL) is closely related to the swelling characteristics of the bentonite particles and the resulting porous medium. However, there currently needs to be more analysis at the mesoscopic level to understand the permeating mechanisms. A numerical model using COMSOL was developed to study the effects of particle swelling on the effective porosity, tortuosity, and hydraulic conductivity of GCL under deionized water actions. The results demonstrate that the swelling of bentonite particles is a crucial factor influencing the effective porosity, tortuosity, and hydraulic conductivity of GCL. Particle swelling significantly affects the width and number of flow paths. When the hydraulic conductivity of GCL approaches the order of 10−11 m/s, a distinct main flow path exists. With an initial porosity increasing from 0.5 to 0.6, the effective porosity after particle swelling rises from 0.07 to 0.11. The width of the minor flow path is approximately 0.001 mm, which is about 2 500 times the size of a water molecule. As the bentonite particles swell, the tortuosity of the main flow paths within the GCL gradually increases. For an initial particle size of 0.1 mm and an initial porosity rising from 0.5 to 0.6, the tortuosity of the main flow path ranges from 1.2 to 1.4. However, the variation in tortuosity for all initial porosities is around 0.07. Meanwhile, when the hydraulic conductivity of GCLs approaches the order of 10−11 m/s, the bentonite particle swelling significantly affects the permeability of GCL. After the pore’s swelling ratio exceeds 0.96, a 0.01 increment in the pore’s swelling ratio results in a rapid decrease in the hydraulic conductivity of GCLs by one order of magnitude. These findings shed light on the mesoscopic behavior of GCL hydraulic performance, particularly the influence of bentonite particle swelling on the effective porosity, tortuosity, and hydraulic conductivity of GCL.

Key words: geosynthetic clay liners, particle swelling, hydraulic conductivity, effective porosity, tortuosity

中图分类号: 

  • TU592
[1] 李品良, 许强, 刘佳良, 何攀, 纪续, 陈婉琳, 彭大雷, . 盐分影响重塑黄土渗透性的微观机制试验研究[J]. 岩土力学, 2023, 44(增刊): 504-512.
[2] 吴广水, 田慧会, 郝丰富, 王书齐, 杨文洲, 祝婷梅, . 基于核磁共振T2时间分布快速预测不同干密度土体的渗透系数[J]. 岩土力学, 2023, 44(增刊): 513-520.
[3] 蔚立元, 杨瀚清, 王晓琳, 刘日成, 王蓥森. 循环剪切作用下三维粗糙裂隙非线性渗流特性数值模拟研究[J]. 岩土力学, 2023, 44(9): 2757-2766.
[4] 张宇, 何想, 路桦铭, 马国梁, 刘汉龙, 肖杨, . 微生物-膨润土联合矿化防渗模型试验研究[J]. 岩土力学, 2023, 44(8): 2337-2349.
[5] 文少杰, 郑文杰, 胡文乐, . 铅污染对黄土宏观持水性能和微观结构演化的影响研究[J]. 岩土力学, 2023, 44(2): 451-460.
[6] 刘宜昭, 陆阳, 刘松玉, . 重金属作用下改性水泥系隔离墙化学相容性研究[J]. 岩土力学, 2023, 44(2): 497-506.
[7] 贺桂成, 唐孟媛, 李咏梅, 李春光, 张志军, 伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究[J]. 岩土力学, 2023, 44(12): 3459-3470.
[8] 郑思维, 胡明鉴, 霍玉龙, 黎宇, . 盐溶液环境下钙质砂渗透性影响因素分析[J]. 岩土力学, 2023, 44(12): 3522-3530.
[9] 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366.
[10] 贺桂成, 谢元辉, 李咏梅, 李春光, 唐孟媛, 张志军, 伍玲玲. 微生物胶结砂岩型铀矿砂的抗渗性能试验研究[J]. 岩土力学, 2022, 43(9): 2504-2514.
[11] 张小燕, 张益, 张晋勋, 魏凯园, 王宁, . 含橡胶纤维钙质砂的渗透和固结特性试验研究[J]. 岩土力学, 2022, 43(8): 2115-2122.
[12] 王海曼, 倪万魁. 不同干密度压实黄土的饱和/非饱和渗透 系数预测模型[J]. 岩土力学, 2022, 43(3): 729-736.
[13] 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.
[14] 蒋小虎, 黄跃廷, 胡海军, 陈铄, 陈锐, 王崇华, 汪慧, 康顺祥, . 基于原位双环、试坑浸水试验和数值模拟反演的Q3黄土饱和渗透系数对比研究[J]. 岩土力学, 2022, 43(11): 2941-2951.
[15] 刘阿强, 李旭, 刘艳, 张志远. 全吸力范围内渗透系数快速测定方法研究[J]. 岩土力学, 2022, 43(11): 3209-3219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 纲,郭志威,魏新江,陈伟军. 软土隧道盾构出洞灾害的渗流应力耦合分析[J]. , 2010, 31(S1): 383 -387 .
[2] 朱建明,彭新坡,姚仰平,徐金海. SMP准则在计算煤柱极限强度中的应用[J]. , 2010, 31(9): 2987 -2990 .
[3] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[4] 张 伟 ,刘泉声. 节理岩体锚杆的综合变形分析[J]. , 2012, 33(4): 1067 -1074 .
[5] 罗 强 ,赵炼恒 ,李 亮 ,谭捍华 ,罗 伟 . 基于Barton-Bandis准则的锚固边坡稳定性分析[J]. , 2013, 34(5): 1351 -1359 .
[6] 许朝阳 ,周 健 ,完绍金 . 桩承式路堤承载特性的颗粒流模拟[J]. , 2013, 34(S1): 501 -507 .
[7] 刘 杰 ,骆世威 ,李建林 ,蔡 健 ,肖 蕾 . 大渡河丹巴水电站长大深埋软岩各向异性及宏观力学参数研究[J]. , 2013, 34(10): 2919 -2927 .
[8] 殷 杰 ,刘夫江 ,刘 辰 ,刘春伟,. 天然沉积粉质黏土的应力路径试验研究[J]. , 2013, 34(12): 3389 -3392 .
[9] 肖国峰 ,杨俊波 ,陈从新,. 一种激光收敛测量方法及其精度评估[J]. , 2014, 35(3): 896 -900 .
[10] 刘景儒 ,王其涵 ,王建平 ,王新志,. 三亚海岸珊瑚礁地层成因演化与工程地质分区[J]. , 2014, 35(S1): 334 -340 .