岩土力学 ›› 2022, Vol. 43 ›› Issue (11): 2941-2951.doi: 10.16285/j.rsm.2021.2086

• 基础理论与实验研究 • 上一篇    下一篇

基于原位双环、试坑浸水试验和数值模拟反演的Q3黄土饱和渗透系数对比研究

蒋小虎1,黄跃廷2,胡海军1,陈铄1,陈锐3,王崇华2,汪慧2,康顺祥1   

  1. 1. 西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100;2. 机械工业勘察设计研究院有限公司,陕西 西安 710043; 3. 哈尔滨工业大学(深圳)土木与环境工程学院,广东 深圳 518055
  • 收稿日期:2021-12-10 修回日期:2022-07-13 出版日期:2022-11-11 发布日期:2022-11-29
  • 通讯作者: 胡海军,男,1982年生,博士,副教授,硕士生导师,主要从事结构性黄土的宏微观特性、离散元方面的研究。E-mail: hu.hai-jun@163.com E-mail:jxh1107243121 @nwafu.edu.cn
  • 作者简介:蒋小虎,男,1995年生,硕士研究生,主要从事黄土渗透和力学特性方面的研究工作。
  • 基金资助:
    陕西省自然科学基础研究计划项目(No. 2021JM-107);国家自然科学基金项目(No. 51409220);西北农林科技大学基本科研业务费专项项目(No. 2014YB049)

Comparison of saturated permeability coefficient of Q3 loess based on in-situ double ring test, field water immersion test and numerical simulation inversion

JIANG Xiao-hu1, HUANG Yue-ting2, HU Hai-jun1, CHEN Suo1, CHEN Rui3, WANG Chong-hua2, WANG Hui2, KANG Shun-xiang1   

  1. 1. College of Water Resources and Architectural Engi neering, Northwest A&F University, Yangling, Shaanxi 712100, China; 2. China Jikan Research Institute of Engineering Investigation and Design, Co., Ltd, Xi'an, Shaanxi 710043, China; 3. School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
  • Received:2021-12-10 Revised:2022-07-13 Online:2022-11-11 Published:2022-11-29
  • Supported by:
    This work was supported by the Natural Science Foundation of Shaanxi Province (2021JM-107), the National Natural Science Foundation of China (51409220) and the Scientific Research Foundation of Northwest A&F University(2014YB049).

摘要: 为准确获取原状Q3黄土的竖向和水平饱和渗透系数,进行了原位、室内试验测试以及数值模拟反演,并应用大型试坑浸水试验检验了所获饱和渗透系数的可靠性。进行了不同内径尺寸的原位双环入渗试验,获取了竖向饱和渗透系数,并应用室内试验测试了竖向和水平饱和渗透系数以及持水曲线;应用COMSOL软件对双环入渗试验进行数值模拟,检验了所测饱和渗透系数的可靠性,利用正交试验获得了最优的竖向和水平饱和渗透系数取值,并利用反演结果对试坑进行数值模拟,将其水分入渗情况与实测值对比。研究结果表明:在现场进行双环入渗试验时选取较大内径的双环获得的竖向饱和渗透系数更为合理。针对双环入渗试验,数值模拟反演所得最优饱和渗透系数在竖向上接近于原位试验所得竖向饱和渗透系数、水平向上接近室内所测水平向饱和渗透系数,竖向饱和渗透系数比水平向饱和渗透系数更加显著地影响水分入渗过程。通过对大型试坑水分入渗情况的验证,检验了反演所得最优饱和渗透系数的可靠性。

关键词: 黄土, 饱和渗透系数, 浸水试验, 双环入渗试验, 数值模拟, 水分入渗

Abstract: In order to accurately obtain the vertical and horizontal saturated permeability coefficient of undisturbed Q3 loess, in-situ tests, laboratory tests and numerical tests were carried out, and the reliability of the saturated permeability coefficient measurement was verified by large-scale test pit immersion test. Firstly, the in-situ double ring infiltration tests with different inner diameter sizes were carried out to obtain vertical saturation coefficients and indoor tests were applied to test vertical and horizontal saturation coefficients and water holding curve. Then, COMSOL software was used to simulate the double-ring infiltration tests, the optimal values of vertical and horizontal saturated permeability coefficients were obtained by orthogonal tests, and the inversion results were used to simulate the test pit immersion test, and the simulated water infiltration was compared with the measured values. The results show that the saturated permeability coefficient obtained by selecting the double-ring with larger inner diameter is more rational in the field double-ring infiltration test. For the double-ring infiltration test, the optimal vertical saturated permeability coefficient obtained by numerical simulation inversion is close to the vertical saturated permeability coefficient obtained by in-situ test in the vertical direction, and close to the horizontal saturated permeability coefficient measured in the laboratory in the horizontal direction. The vertical saturated permeability coefficient affects the water infiltration process more significantly than the horizontal saturated permeability coefficient. The reliability of the optimal saturation permeability coefficient obtained from the inversion was tested by verifying the water infiltration in a large test pit.

Key words: loess, saturated permeability coefficient, immersion test, double-ring infiltration test, numerical simulation, water infiltration

中图分类号: 

  • TU 444
[1] 许健, 周立阳, 胡科, 李彦锋, 武智鹏, . 受振动荷载扰动裂隙性黄土单轴压缩力学行为研究[J]. 岩土力学, 2023, 44(1): 171-182.
[2] 韩佳明, 董照, 苏三庆, 马鑫, 李冠兵, . 均质非饱和边坡降雨入渗解析解及在黄土边坡的应用[J]. 岩土力学, 2023, 44(1): 241-250.
[3] 刘德仁, 安政山, 徐硕昌, 王旭, 张转军, 金芯, 张严, . 靖远地区大厚度黄土地基浸水湿陷过程及土中竖向应力特征试验研究[J]. 岩土力学, 2023, 44(1): 268-278.
[4] 陈星, 李建林, 邓华锋, 党莉, 刘奇, 王兴霞, 王伟, . 卸荷蠕变条件下软硬相接岩层非协调变形规律研究[J]. 岩土力学, 2023, 44(1): 303-316.
[5] 王情玉, 滕继东, 钟宇, 张升, 盛岱超, . 基于格子Boltzmann方法的饱和冻土孔隙成冰介观尺度模拟[J]. 岩土力学, 2023, 44(1): 317-326.
[6] 蒋凡, 刘华, 岳青, 杨文爽. 超大沉井基础取土下沉刃脚土压力变化规律研究[J]. 岩土力学, 2022, 43(S2): 431-442.
[7] 周昊, 陈国良, 何翔, 吴佳明, 张荣堂, 殷大伟, 袁坤彬, 武哲, . 岩土工程建筑信息模型集成与仿真关键技术研究[J]. 岩土力学, 2022, 43(S2): 443-453.
[8] 邓鹏海, 刘泉声, 黄兴, 潘玉丛, 伯音, . 水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究[J]. 岩土力学, 2022, 43(S2): 508-523.
[9] 骆冠勇, 钟淼, 曹洪, 潘泓, . 砂土层中盾构掘进实测数据及数值模拟分析[J]. 岩土力学, 2022, 43(S2): 563-574.
[10] 袁维, 钟辉亚, 朱屹, 唐佳, 洪建飞, 王亚雄, 林杭, 万宁, 王安礼, . 基于数据融合的边坡临滑状态确定方法[J]. 岩土力学, 2022, 43(S2): 575-587.
[11] 丁扬, 熊晔, 陈孜孜, 吴晓寒, 王小波, . 灌注桩动力特性试验与数值模拟研究[J]. 岩土力学, 2022, 43(S2): 640-646.
[12] 刘宽, 叶万军, 高海军, 董琪, . 酸碱污染黄土抗剪强度演化规律及微观机制[J]. 岩土力学, 2022, 43(S1): 1-12.
[13] 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366.
[14] 金鑫, 王铁行, 郝延周, 赵再昆, 张亮, 张猛, . 桩间黄土卸荷湿陷过程中卸荷量计算方法初探[J]. 岩土力学, 2022, 43(9): 2399-2409.
[15] 阮滨, 吉瀚文, 王苏阳, 贺鸿俊, 苗雨. 基于台阵观测的基岩地震动入射波分离 方法及数值验证[J]. 岩土力学, 2022, 43(9): 2615-2623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .