岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 12-26.doi: 10.16285/j.rsm.2022.0670

• 基础理论与实验研究 • 上一篇    下一篇

裂隙砂岩注浆前后渗流特性及注浆后 力学特性试验研究

张培森1, 2,许大强1, 2,李腾辉3,胡昕4,赵成业1, 2,侯季群1, 2,牛辉1, 2   

  1. 1. 山东科技大学 矿山灾害预防控制省部共建国家重点实验室培育基地,山东 青岛 266590;2. 山东科技大学 矿业工程国家级实验教学示范中心,山东 青岛 266590;3. 济南城建集团有限公司,山东 济南 250031;4. 中国电力工程顾问集团西北电力设计院有限公司 陕西 西安 710075
  • 收稿日期:2022-05-07 接受日期:2022-08-28 出版日期:2023-11-16 发布日期:2023-11-16
  • 通讯作者: 许大强,男,1997年生,硕士研究生,主要从事岩石力学与煤矿防治水等方面的研究。E-mail:840684859@qq.com E-mail:peisen_sky@163.com
  • 作者简介:张培森,男,1977年生,博士,教授,主要从事岩石力学与采矿工程等方面的研究。
  • 基金资助:
    国家重点研发计划资助项目(No.2018YFC0604702);国家自然科学基金资助项目(No.51379119);山东省自然科学基金项目(No.ZR2021ME086)

Experimental study of seepage characteristics before and after grouting and mechanical characteristics after grouting of fractured sandstone

ZHANG Pei-sen1, 2, XU Da-qiang1, 2, LI Teng-hui3, HU Xin4, ZHAO Cheng-ye1, 2, HOU Ji-qun1, 2, NIU Hui1, 2   

  1. 1. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. National Demonstration Center for Experimental Mining Engineering Education, Qingdao, Shandong 266590, China; 3. Jinan Urban Construction Group Co., Ltd., Jinan, Shandong 250031, China; 4. China Power Engineering Consulting Group Northwest Electric Power Design Institute Co. Ltd., Xi’an, Shaanxi 710075, China
  • Received:2022-05-07 Accepted:2022-08-28 Online:2023-11-16 Published:2023-11-16
  • Supported by:
    This work was supported by the National Key Research and Development Program Sub-task (2018YFC0604702), the National Natural Science Foundation of China (51379119) and the Natural Science Foundation of Shandong Province (ZR2021ME086).

摘要: 为探究裂隙砂岩注浆前后渗流特性及注浆后力学特性变化规律,利用Rock Top多场耦合试验仪在不同围压下以0.02 mm/min的恒定速率对砂岩进行三轴压缩试验得到裂隙砂岩并进行渗流试验,进而采用自主研制的注浆加固系统对裂隙砂岩进行注浆加固,再利用Rock Top多场耦合试验仪对注浆后的裂隙砂岩在不同围压下进行三轴压缩渗流试验。结果表明:(1)裂隙砂岩注浆后的渗透率相对于注浆前显著降低,下降幅度在24.26%~96.55%之间,但均大于原岩渗透率;(2)裂隙砂岩注浆前、后的渗透率随静水压等梯度增加呈现出不同的阶段性变化规律,并且当静水压达40 MPa及以上时,5 MPa以内的渗透压差对渗透率影响较小,渗透率曲线趋于水平;(3)裂隙砂岩注浆后仅在10 MPa围压下表现出同原岩类似的脆性破坏特征,在20~60 MPa围压下则失去了原岩的脆性破坏特征,表现出很强的延性破坏,并在峰后出现塑性流动现象;(4)裂隙砂岩注浆后的峰值强度、峰值应变皆随围压的增大而增大,并呈现出满足二次函数关系的非线性变化特征,其峰值强度介于原岩峰值强度的44%~59%之间;(5)裂隙砂岩注浆后的破坏形式以滑移剪切破坏为主,低围压下会伴随有新破坏形式产生,随着围压增大,破坏程度减弱;(6)岩-浆界面电镜扫描试验表明,钙矾石与C-S-H(水化硅酸钙)凝胶相互搭接形成了稳定的水化产物,从而提升了岩石承载力。

关键词: 裂隙砂岩, 注浆加固, 渗透特性, 力学特性, 电镜扫描

Abstract: This study aims to explore the seepage characteristics of fractured sandstone before and after grouting and the change rule of mechanical properties after grouting. Firstly, Rock Top multi-field coupling tester was used to conduct triaxial compression test on sandstone under different confining pressures at a constant rate of 0.02 mm/min to obtain fractured sandstone and conduct seepage test. Then, the self-developed grouting reinforcement system was used to reinforce the fractured sandstone, and the Rock Top multi-field coupling tester was used to conduct the triaxial compression seepage test on the fractured sandstone under different confining pressures. The results show that: (1) The permeability of fractured sandstone decreases significantly after grouting compared with that before grouting, with a decrease range of 24.26%-96.55%, but it is greater than the original rock permeability. (2) The permeability of fractured sandstone before and after grouting shows different periodic changes with the increase of hydrostatic pressure. When hydrostatic pressure reaches 40 MPa or above, the permeability difference within 5 MPa has a little effect on permeability, and the permeability curve tends to be horizontal. (3) After grouting, the fractured sandstone only exhibits brittle failure characteristics similar to the original rock only under 10 MPa confining pressure, but loses the brittle failure characteristics of the original rock under 20−60 MPa confining pressure, showing strong ductility failure and plastic flow phenomenon after the peak. (4) The peak strength and strain of the fractured sandstone after grouting both increase with the increase of confining pressure and show nonlinear variation characteristics satisfying the quadratic function relation. The peak strength ranges from 44% to 59% of the peak strength of the original rock. (5) The failure mode of fractured sandstone after grouting is mainly slip-shear failure, and new failure modes will appear under low confining pressure. With the increase of confining pressure, the failure effect weakens. (6) Scanning electron microscopy test on rock-slurry interface shows that ettringite and C-S-H (calcium silicate hydrate) gel are bonded to form stable hydration products, thus improving the bearing capacity of rock.

Key words: fractured sandstone, grouting reinforcement, permeability characteristics, mechanical properties, scanning electron microscope

中图分类号: 

  • TU451
[1] 范浩, 王磊, 王连国, . 不同应力路径下层理煤体力学特性试验研究[J]. 岩土力学, 2024, 45(2): 385-395.
[2] 王家全, 仲文涛, 黄世斌, 唐毅, . 模块式加筋土挡墙模型试验及静动力学性能研究[J]. 岩土力学, 2023, 44(5): 1435-1444.
[3] 杨忠平, 李进, 刘浩宇, 张益铭, 刘新荣, . 土石混合体−基岩界面剪切力学特性块石尺寸效应[J]. 岩土力学, 2023, 44(4): 965-974.
[4] 王伟, 张宽, 曹亚军, 陈超, 朱其志, . 层状千枚岩各向异性力学特性与脆性评价研究[J]. 岩土力学, 2023, 44(4): 975-989.
[5] 梁靖宇, 沈万涛, 路德春, 齐吉琳, . 考虑沉积角影响的冻结砂土单轴压缩试验研究[J]. 岩土力学, 2023, 44(4): 1065-1074.
[6] 张凌凯, 崔子晏, . 干湿−冻融循环条件下膨胀土的压缩及渗透特性变化规律[J]. 岩土力学, 2023, 44(3): 728-740.
[7] 张平, 任松, 张闯, 吴斐, 隆能增, 李凯鑫, . 循环扰动和高温作用下砂岩的岩爆倾向性及破坏特征研究[J]. 岩土力学, 2023, 44(3): 771-783.
[8] 荣浩宇, 王伟, 李桂臣, 许嘉徽, 梁东旭, . 岩石−锚固剂结构水化失稳微观力学特性[J]. 岩土力学, 2023, 44(3): 784-798.
[9] 胡南燕, 黄建彬, 罗斌玉, 李雪雪, 陈敦熙, 曾子懿, 付晗, 娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究[J]. 岩土力学, 2023, 44(12): 3471-3480.
[10] 康佐, 亢佳伟, 邓国华, . 欠压密饱和黄土基本物理力学性质研究[J]. 岩土力学, 2023, 44(11): 3117-3127.
[11] 王磊, 陈礼鹏, 刘怀谦, 朱传奇, 李少波, 范浩, 张帅, 王安铖, . 不同初始瓦斯压力下煤体动力学特性及其劣化特征[J]. 岩土力学, 2023, 44(1): 144-158.
[12] 陈星, 李建林, 邓华锋, 党莉, 刘奇, 王兴霞, 王伟, . 卸荷蠕变条件下软硬相接岩层非协调变形规律研究[J]. 岩土力学, 2023, 44(1): 303-316.
[13] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[14] 陈光波, 张俊文, 贺永亮, 张国华, 李谭, . 煤岩组合体峰前能量分布公式推导及试验[J]. 岩土力学, 2022, 43(S2): 130-143.
[15] 余伟健, 李可, 刘泽, 郭涵潇, 安百富, 王平, . 煤巷弱胶结顶板稳定性分析与变形控制技术[J]. 岩土力学, 2022, 43(S2): 382-391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 张永兴,卢 黎,饶枭宇,李 剑. 压力型锚杆力学性能模型试验研究[J]. , 2010, 31(7): 2045 -2050 .
[4] 张虎元,崔素丽,刘吉胜,梁 健. 混合型缓冲回填材料膨胀力试验研究[J]. , 2010, 31(10): 3087 -3095 .
[5] 王义重,李勇泉,傅旭东. 求水山隧道下穿机荷高速段新奥法施工有限元计算[J]. , 2011, 32(1): 125 -131 .
[6] 孔祥兴,夏才初,仇玉良,张丽英,龚建伍. 平行小净距盾构与CRD法黄土地铁隧道施工力学研究[J]. , 2011, 32(2): 516 -524 .
[7] 王振红,朱岳明,武圈怀,张宇惠. 混凝土热学参数试验与反分析研究[J]. , 2009, 30(6): 1821 -1825 .
[8] 江学良 ,杨 慧 ,曹 平. 基于SURPAC模型的采空区与露采边坡相互影响的FLAC3D分析[J]. , 2011, 32(4): 1234 -1240 .
[9] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[10] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .