岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 130-143.doi: 10.16285/j.rsm.2021.0704

• 基础理论与实验研究 • 上一篇    下一篇

煤岩组合体峰前能量分布公式推导及试验

陈光波1,张俊文2,贺永亮3,张国华4,李谭1   

  1. 1. 内蒙古科技大学 矿业研究院,内蒙古 包头 014010;2. 中国矿业大学(北京) 能源与矿业学院,北京 100083; 3. 中国矿业大学 矿业工程学院,江苏 徐州 221116;4. 黑龙江科技大学 矿业工程学院,黑龙江 哈尔滨 150022
  • 收稿日期:2021-05-09 修回日期:2021-07-10 出版日期:2022-10-10 发布日期:2022-10-03
  • 通讯作者: 张俊文,男,1977年生,博士,教授,博士生导师,主要从事深部卸压开采方面的研究工作。E-mail: zhangjw@cumtb.edu.cn E-mail:cgb150617@126.com
  • 作者简介:陈光波,男,1990年生,博士,讲师,硕士生导师,主要从事矿山压力与岩层控制以及岩石力学方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No.51774122);内蒙古自治区自然科学基金项目(No.2020BS05007);越崎杰出学者资助项目(No.2020JCB01)

Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body

CHEN Guang-bo1, ZHANG Jun-wen2, HE Yong-liang3, ZHANG Guo-hua4, LI Tan1   

  1. 1. Mining Research Institute, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolian 014010, China; 2. School of Energy and Mining Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China; 3. School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 4. Institute of Mining Engineering, Heilongjiang University of Science and Technology, Harbin, Heilongjiang 150022, China
  • Received:2021-05-09 Revised:2021-07-10 Online:2022-10-10 Published:2022-10-03
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51774122), the Natural Science Foundation of Inner Mongolia Autonomous Region(2020BS05007) and Yue Qi Distinguished Scholar Project(2020JCB01).

摘要: 冲击地压一定是在能量驱使下发生的,为探索引发冲击地压的能量在煤岩系统中的积聚层位,构建了煤岩组合体力学模型,推导了煤岩组合体峰前能量分布公式,对细砂岩−煤(fine sandstone-coal,简称FC)、粗砂岩−煤(gritstone-coal,简称GC)、细砂岩−煤−粗砂岩(fine sandstone-coal-gritstone,简称FCG)3种组合体开展5种加载速率下的能量积聚规律试验,分析了组合体破坏特征、力学特性及能量积聚规律。试验表明:(1)在0.001 mm/s加载速率下,组合体峰前能量主要以原生裂纹的扩展、贯通的形式缓慢耗散,属于塑性完全破坏;在0.1 mm/s加载速率下,组合体峰前能量主要以局部弹射破坏的形式快速释放,属于脆性不完全破坏。(2)组合体的抗压强度、弹性模量、峰前能量、冲击能量指数与加载速率呈对数关系。随着加载速率增大,组合体抗压强度、弹性模量、冲击能量指数增幅逐渐减小,峰前能量增长率呈现低-高-低的趋势。(3)随着加载速率增加,煤组分储能增多,能量占比增大。在0.001~0.010 mm/s加载速率下,煤组分积聚能量增加较快;在0.010~0.100 mm/s加载速率下,煤组分积聚能量增加较慢。(4)相同加载速率下,煤组分能量占比顺序:FC组合体>FCG组合体>GC组合体。(5)组合体中煤组分能量占比均大于50%,煤组分是能量积聚的主要载体。相同应力条件下,软弱岩层能量积聚能力强于坚硬岩层,更易积聚能量。研究结果可为确定冲击地压能量积聚层位和释能减冲工作提供参考。

关键词: 冲击地压, 煤岩组合体, 加载速率, 力学特性, 峰前能量, 能量积聚

Abstract: Rockburst must occur under the drive of energy. In this study, a mechanical model of coal-rock combined body was constructed to explore the accumulation layer of energy causing rockburst in coal-rock system, and a formula of pre-peak energy distribution of coal-rock combined body was deduced. The experiments of energy accumulation under five loading rates of fine sandstone-coal (FC), coarse sandstone-coal (GC) and fine sandstone-coal-coarse sandstone (FCG) were carried out. The failure characteristics, mechanical properties and energy accumulation law of the combined body were analyzed. The results showed that: 1) At a loading rate of 0.001 mm/s, the pre-peak energy of the combined body was mainly dissipated slowly in the form of primary crack propagation and coalescence, which belongs to complete plastic failure; and at the 0.1 mm/s loading rate, the pre-peak energy of the combined body was mainly released rapidly in the form of local ejection failure, which belongs to brittle incomplete failure. 2) The compressive strength, elastic modulus, pre-peak energy and impact energy index of the combined body have a logarithmic relationship with the loading rate. As the loading rate increases, the increases of compressive strength, elastic modulus and impact energy index decrease gradually, and the pre-peak energy growth rate shows a "low-high-low" trend. 3) The energy storage and energy share of coal components increase as the loading rate increases. At the 0.001−0.010 mm/s loading rate, the accumulated energy of coal components increases rapidly and at the 0.010-0.100 mm/s loading rate, the accumulated energy of coal components increases slowly. 4) At the same loading rate, the energy proportion of coal components is in the following order: FC combined body > FCG combined body > GC combined body. 5) The energy proportion of coal component in the combined body surpasses 50%, and the coal component is the main carrier of energy accumulation. Under the same stress condition, the energy accumulation ability of weak rock is stronger than that of hard rock. In other words, energy is more easily accumulated in weak rocks. The research results can provide an insight into determining the energy accumulation layer of rock burst and the work of energy release and impact reduction.

Key words: rock burst, coal-rock combined body, loading rate, mechanical properties, pre-peak energy, energy accumulation

中图分类号: 

  • TD325
[1] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[2] 刘玉春, 荆刚, 赵扬锋, 樊艺, 潘一山, . 加载速率与断层倾角对断层矿震失稳影响 的试验研究[J]. 岩土力学, 2022, 43(S1): 35-45.
[3] 周辉, 宋明, 张传庆, 杨凡杰, 路新景, 房后国, 邓伟杰, . 三轴应力下水对泥质砂岩力学特性 影响的试验研究[J]. 岩土力学, 2022, 43(9): 2391-2398.
[4] 马利遥, 胡斌, 陈勇, 崔凯, 丁静, . 不同渗透水压下完整泥页岩剪切−渗流特性研究[J]. 岩土力学, 2022, 43(9): 2515-2524.
[5] 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082.
[6] 刘旭锋, 周扬一, . 多轴压缩条件下层状硬质片岩的力学特性研究[J]. 岩土力学, 2022, 43(8): 2213-2221.
[7] 徐龙飞, 翁效林, WONG Henry, FABBRI Antonin, 朱谭谭, . 温、湿控制生土三轴试验装置的研制与应用[J]. 岩土力学, 2022, 43(8): 2327-2336.
[8] 钟文, 朱文韬, 曾鹏, 黄震, 王晓军, 郭钟群, 胡凯建, . 浸矿开采对离子型稀土基岩力学特性的影响研究[J]. 岩土力学, 2022, 43(6): 1481-1492.
[9] 汪铁楠, 翟越, 高欢, 李宇白, 李艳, 孙维振, 颜廷韵, . 静力压缩下煤岩组合体的裂前宏观弹性模型[J]. 岩土力学, 2022, 43(4): 1031-1040.
[10] 陶志刚, 郭爱鹏, 何满潮, 张瑨, 夏敏, 王鼎, 李梦楠, 朱珍, . 微观负泊松比锚杆静力学特性及其工程应用研究[J]. 岩土力学, 2022, 43(3): 808-818.
[11] 张文博, 柏巍, 孔令伟, 樊恒辉, 岳秀, . 淋溶时间对红黏土物理力学特性的影响[J]. 岩土力学, 2022, 43(2): 443-452.
[12] 姜德义, 郭朋煜, 范金洋, 陈波, 陈结, . 升温速率对高温作用后砂岩的宏细观性质影响[J]. 岩土力学, 2022, 43(10): 2675-2688.
[13] 杨 科, 刘文杰, 马衍坤, 许日杰, 池小楼, . 真三轴单面临空下煤岩组合体冲击 破坏特征试验研究[J]. 岩土力学, 2022, 43(1): 15-27.
[14] 刘婕, 张黎明, 丛宇, 王在泉, . 真三轴应力路径花岗岩卸荷破坏力学特性研究[J]. 岩土力学, 2021, 42(8): 2069-2077.
[15] 周恒宇, 王修山, 胡星星, 熊志奇, 张小元, . 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨有贞,葛修润,黄 铭. 基于哈密顿体系辛几何算法求解空间地基问题[J]. , 2009, 30(2): 536 -541 .
[2] 赵 健,曾宪明,孙 杰,李世民,林大路. 新型锚固类结构抗爆性能数值分析[J]. , 2009, 30(S1): 255 -259 .
[3] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .
[4] 魏厚振,颜荣涛,陈 盼,田慧会,吴二林,韦昌富. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. , 2011, 32(S2): 198 -203 .
[5] 李英勇 ,张思峰 . 岩土预应力锚固结构服役寿命研究[J]. , 2012, 33(12): 3704 -3708 .
[6] 罗 荣,曾亚武,曹 源,黎 玲. 岩石非均质度对其力学性能的影响研究[J]. , 2012, 33(12): 3788 -3794 .
[7] 章瑞文,徐日庆. 土拱效应原理求解挡土墙土压力方法的改进[J]. , 2008, 29(4): 1057 -1060 .
[8] 马 巍,刘 端,吴青柏. 青藏铁路冻土路基变形监测与分析[J]. , 2008, 29(3): 571 -579 .
[9] 孔 亮,陈凡秀,李 杰. 基于数字图像相关法的砂土细观直剪试验及其颗粒流数值模拟[J]. , 2013, 34(10): 2971 -2978 .
[10] 王环玲,徐卫亚,杨圣奇. 岩石变形破坏过程中渗透率演化规律的试验研究[J]. , 2006, 27(10): 1703 -1708 .