岩土力学 ›› 2022, Vol. 43 ›› Issue (8): 2213-2221.doi: 10.16285/j.rsm.2021.1843

• 基础理论与实验研究 • 上一篇    下一篇

多轴压缩条件下层状硬质片岩的力学特性研究

刘旭锋1, 2,周扬一1, 2   

  1. 1. 东北大学 资源与土木工程学院 深部金属矿山安全开采教育部重点实验室,辽宁 沈阳 110819; 2. 东北大学 辽宁省深部工程与智能技术重点实验室,辽宁 沈阳 110819
  • 收稿日期:2021-10-31 修回日期:2022-03-03 出版日期:2022-08-11 发布日期:2022-08-17
  • 通讯作者: 周扬一,男,1987年生,博士,副教授,主要从事层状岩体力学性质及力学模型方面的研究。E-mail:zhouyangyi@mail.neu.edu.cn E-mail:liuxfyg@126.com
  • 作者简介:刘旭锋,男,1990年生,博士研究生,主要从事层状岩体力学特性方面的研究。
  • 基金资助:
    国家自然科学基金(No. 51709043,No. 52079027)。

Experimental study on mechanical properties of layered hard schist under multiaxial compression

LIU Xu-feng1, 2, ZHOU Yang-yi1, 2   

  1. 1. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China; 2. Key Laboratory of Liaoning Province on Deep Engineering and Intelligent Technology, Northeastern University, Shenyang, Liaoning 110819, China
  • Received:2021-10-31 Revised:2022-03-03 Online:2022-08-11 Published:2022-08-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51709043,52079027).

摘要: 在深部工程中经常会遇到层状岩体,由于高应力的影响,在工程活动中发生因层状结构面诱发的岩体灾害问题。这与深部工程中的真三向高应力环境及层状结构面产状密切相关。为此,基于一种取自某深部金属矿山的层状硬质片岩,开展了考虑片理方位的真三轴压缩试验研究,获取了该片岩在两种片理加载方位下,不同应力差条件时,试样的变形、强度及破裂数据。结果表明,该硬质片岩的力学特性受片理加载方位和应力条件影响较大。具体表现在,当中间主应力σ2平行片理走向时,试样的脆性更强,且最小主应力σ3 越小脆性越强。当σ2垂直片理走向时试样的强度更高,但强度随σ增加而增加的敏感性较弱。当σ2平行片理走向时,试样的破坏均以沿片理的剪切为主;而当σ2 垂直片理走向时,试样在低σ3 时,主要发生穿片理的拉破坏,高σ3 时,则转变为沿片理的剪切破坏。试验结果对陡倾层状硬质岩体工程的稳定性评价有一定的启示意义,即当片理走向与洞轴线的夹角较小时,浅层围岩片理面的法向应力释放程度较高,易发生受片理结构控制的脆性破坏;反之,夹角较大时,岩体的稳定性较强。

关键词: 硬质片岩, 多轴压缩, 片理方位, 力学特性

Abstract:

Layered rock masses are often encountered in deep engineering. Due to the influence of high stress, rock mass hazards induced by layered structures often occur in engineering activities. This is closely related to the true three-dimensional high-stress environment and layered structures in deep engineering. For this reason, the test considering the orientation of schistosity was carried out under true triaxial compression based on a layered hard schist taken from a deep metal mine, and the deformation, strength and fracture characteristic of the samples with two schistosity loading orientations were obtained under different stress conditions. The results show that the mechanical properties of the hard schist are greatly affected by schistosity loading orientation and stress conditions. More specifically, when σ2 is parallel to the strike of schistosity, the brittleness of the sample is stronger, and the smaller the σ3, the stronger the brittleness. The strength of the sample is higher when σ2 is perpendicular to the strike of schistosity, but the sensitivity of the increase in strength with the increase of  σ3 is weaker. When σ2 is parallel to the strike of schistosity, the shear failure along the schistosity prevails. When σ2 is perpendicular to the strike of schistosity of the specimen, the tensile failure through the schistosity mainly occurs at a low σ3 , and it transforms into shear failure along the schistosity at the high σ3 . The test results have certain enlightenment significance for the stability evaluation of steep layered hard rock engineering: when the included angle between schistosity strike and tunnel axis is small, the normal stress release degree of schistosity of shallow rock is high, and brittle failure controlled by schistosity structure is easy to occur; on the contrary, the rock mass is relatively more stable when the included angle is large.

Key words: hard schist, multiaxial compression, schistosity orientation, mechanical properties

中图分类号: 

  • TU 45 
[1] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[2] 陈光波, 张俊文, 贺永亮, 张国华, 李谭, . 煤岩组合体峰前能量分布公式推导及试验[J]. 岩土力学, 2022, 43(S2): 130-143.
[3] 周辉, 宋明, 张传庆, 杨凡杰, 路新景, 房后国, 邓伟杰, . 三轴应力下水对泥质砂岩力学特性 影响的试验研究[J]. 岩土力学, 2022, 43(9): 2391-2398.
[4] 马利遥, 胡斌, 陈勇, 崔凯, 丁静, . 不同渗透水压下完整泥页岩剪切−渗流特性研究[J]. 岩土力学, 2022, 43(9): 2515-2524.
[5] 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082.
[6] 徐龙飞, 翁效林, WONG Henry, FABBRI Antonin, 朱谭谭, . 温、湿控制生土三轴试验装置的研制与应用[J]. 岩土力学, 2022, 43(8): 2327-2336.
[7] 钟文, 朱文韬, 曾鹏, 黄震, 王晓军, 郭钟群, 胡凯建, . 浸矿开采对离子型稀土基岩力学特性的影响研究[J]. 岩土力学, 2022, 43(6): 1481-1492.
[8] 陶志刚, 郭爱鹏, 何满潮, 张瑨, 夏敏, 王鼎, 李梦楠, 朱珍, . 微观负泊松比锚杆静力学特性及其工程应用研究[J]. 岩土力学, 2022, 43(3): 808-818.
[9] 张文博, 柏巍, 孔令伟, 樊恒辉, 岳秀, . 淋溶时间对红黏土物理力学特性的影响[J]. 岩土力学, 2022, 43(2): 443-452.
[10] 刘婕, 张黎明, 丛宇, 王在泉, . 真三轴应力路径花岗岩卸荷破坏力学特性研究[J]. 岩土力学, 2021, 42(8): 2069-2077.
[11] 周恒宇, 王修山, 胡星星, 熊志奇, 张小元, . 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098.
[12] 杨爱武, 徐彩丽, 郎瑞卿, 王韬, . 冻融循环作用下城市污泥固化土三维力学 特性及其破坏准则[J]. 岩土力学, 2021, 42(4): 963-975.
[13] 杨春和, 张超, 李全明, 于玉贞, 马昌坤, 段志杰, . 大型高尾矿坝灾变机制与防控方法[J]. 岩土力学, 2021, 42(1): 1-17.
[14] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[15] 蒋长宝, 魏 财, 段敏克, 陈昱霏, 余塘, 李政科, . 饱水和天然状态下页岩滞后效应及阻尼特性研究[J]. 岩土力学, 2020, 41(6): 1799-1808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .