岩土力学 ›› 2022, Vol. 43 ›› Issue (10): 2675-2688.doi: 10.16285/j.rsm.2021.2102

• 基础理论与实验研究 • 上一篇    下一篇

升温速率对高温作用后砂岩的宏细观性质影响

姜德义1, 2,郭朋煜1, 2,范金洋1, 2,陈波1, 2,陈结1, 2   

  1. 1. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044;2. 重庆大学 资源与安全学院,重庆 400044
  • 收稿日期:2021-12-13 修回日期:2022-06-24 出版日期:2022-10-19 发布日期:2022-10-17
  • 通讯作者: 范金洋,男,1989年生,博士,副教授,主要从事矿山动力灾害防治方面的研究。E-mail: Jinyang.f@qq.com E-mail:deyij@cqu.edu.cn
  • 作者简介:姜德义,男,1962年生,博士,教授,主要从事矿山岩石力学、岩土工程及盐穴能源储备方面的研究。
  • 基金资助:
    国家自然科学基金(No. 51834003,No.51904039)

Effect of heating rate on macro and mesoscopic properties of sandstone after high temperature

JIANG De-yi1, 2, GUO Peng-yu1, 2, FAN Jin-yang1, 2, CHEN Bo1, 2, CHEN Jie1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
  • Received:2021-12-13 Revised:2022-06-24 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51834003, 51904039).

摘要:

砂岩受到高温影响后,宏细观性质会发生不同程度的变化,400 ℃ 和1 000 ℃ 是砂岩宏细观性质变化的两个重要节点。为进一步研究升温速率对高温砂岩物理性质、力学特性以及内部微观破裂的影响,以350 ℃和 950 ℃为目标温度,开展了不同升温速率下砂岩的单轴压缩试验,单轴压缩全程采用声发射监测,采用扫描电镜分析了砂岩破坏后的细观形貌。研究结果表明:经不同升温速率处理后,350 ℃砂岩的质量、体积、密度以及纵波波速变化较小;950 ℃砂岩的质量、密度及纵波波速显著降低,体积明显增大,且升温速率越高变化率越小。350 ℃砂岩的应力−应变曲线、应力−体积应变曲线、抗压强度及弹性模量受升温速率的影响较小;950 ℃ 下砂岩试样应力−应变曲线随升温速率的增加向上偏移,抗压强度和弹性模量则先增加后达到恒定。350 ℃ 及 950 ℃砂岩的声发射振铃累计数都有随升温速率增大而减小的趋势,950 ℃ 下升温速率为1 ℃/min 时砂岩的振铃累计数最大,突发性声发射活动区域最多。对不同升温速率砂岩进行扫描电镜分析发现,升温速率对350 ℃ 砂岩的微观形貌影响较小,950 ℃ 砂岩试件则会随着升温速率的下降出现微裂纹和微孔隙数量增多、体积扩大的情况。

关键词: 高温砂岩, 升温速率, 力学特性, 声发射, 细观分析

Abstract:

After sandstone is subjected to high temperature, the macro and micro properties will change to different degrees. 400 ℃ and 1 000 ℃ are two important nodes in the change of the macro and meso properties of sandstone. In order to further study the influence of heating rate on the physical properties, mechanical properties and internal meso-fracture of sandstone, the uniaxial compression experiment of sandstone under different heating rates was carried out with 350 ℃ and 950 ℃. The whole process of uniaxial compression was monitored by acoustic emission, and scanning electron microscope was used to analyze the meso-morphology of destructed sandstone. After treated at different heating rates, 350 ℃ sandstone has little change in the mass, volume, density and longitudinal wave velocity, while 950 ℃ sandstone decreased significantly in the mass, density and longitudinal wave velocity, and increased remarkably in the volume, and the higher heating rate, the smaller change rate. The stress-strain curve, stress-volume strain curve, compressive strength and elastic modulus of the 350 ℃ sandstone are virtually unaffected due to the heating rate. The stress-strain curve of the sandstone sample at 950 ℃ is upwardly biased with the increase of the heating rate, the compressive strength and elastic modulus first increase and then reach a constant value; the cumulative ring-down counts of acoustic emission of sandstone at 350 ℃ and 950 ℃ have a tendency to decrease with the increase of heating rate. When the temperature is 950 ℃ and the heating rate is 1 ℃/min, the cumulative ring-down counts of sandstone and the sudden acoustic emission area are the largest; scanning electron microscopy analysis of sandstones with different heating rates showed that heating rate has little effect on the mesoscopic morphology of 350 ℃ sandstone; with the decrease of the heating rate, the number of microcracks and micropores of 950 ℃ sandstone will  increase, the volume size of microcracks and micropores will also increase.

Key words: high temperature sandstone, heating rate, mechanical properties, acoustic emission, meso-analysis

中图分类号: 

  • TU 45
[1] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[2] 李冬冬, 盛谦, 肖明, 王小毛, . 基于改进颗粒流声发射片的地下厂房洞室围岩局部损伤细观机制研究[J]. 岩土力学, 2022, 43(S2): 117-129.
[3] 陈光波, 张俊文, 贺永亮, 张国华, 李谭, . 煤岩组合体峰前能量分布公式推导及试验[J]. 岩土力学, 2022, 43(S2): 130-143.
[4] 张东晓, 郭伟耀, 赵同彬, 谷雪斌, 陈玏昕, . 岩石I型裂纹定向扩展规律试验研究[J]. 岩土力学, 2022, 43(S2): 231-244.
[5] 王立, 倪彬, 谢伟, 王书昭, 寇坤, 赵奎, . 不同粒径黄砂岩微观−宏观裂纹演化机制研究[J]. 岩土力学, 2022, 43(S2): 373-381.
[6] 朱星, 刘汉香, 胡桔维, 范杰, . 砂岩破坏声发射临界慢化前兆特征试验研究[J]. 岩土力学, 2022, 43(S1): 164-172.
[7] 胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, . 离散裂隙网络对岩石力学性质和声发射特性 影响的颗粒流分析[J]. 岩土力学, 2022, 43(S1): 542-552.
[8] 周辉, 宋明, 张传庆, 杨凡杰, 路新景, 房后国, 邓伟杰, . 三轴应力下水对泥质砂岩力学特性 影响的试验研究[J]. 岩土力学, 2022, 43(9): 2391-2398.
[9] 马利遥, 胡斌, 陈勇, 崔凯, 丁静, . 不同渗透水压下完整泥页岩剪切−渗流特性研究[J]. 岩土力学, 2022, 43(9): 2515-2524.
[10] 孙冰, 唐文福, 曾晟, 侯珊珊, 方耀楚, . 基于自组织临界理论的岩石声发射能量 与时间的统计分析[J]. 岩土力学, 2022, 43(9): 2525-2538.
[11] 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082.
[12] 刘旭锋, 周扬一, . 多轴压缩条件下层状硬质片岩的力学特性研究[J]. 岩土力学, 2022, 43(8): 2213-2221.
[13] 徐龙飞, 翁效林, WONG Henry, FABBRI Antonin, 朱谭谭, . 温、湿控制生土三轴试验装置的研制与应用[J]. 岩土力学, 2022, 43(8): 2327-2336.
[14] 钟文, 朱文韬, 曾鹏, 黄震, 王晓军, 郭钟群, 胡凯建, . 浸矿开采对离子型稀土基岩力学特性的影响研究[J]. 岩土力学, 2022, 43(6): 1481-1492.
[15] 王刚, 宋磊博, 刘夕奇, 包春燕, 吝曼卿, 刘广建, . 非贯通节理花岗岩剪切断裂力学特性及 声发射特征研究[J]. 岩土力学, 2022, 43(6): 1533-1545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .