岩土力学 ›› 2023, Vol. 44 ›› Issue (1): 144-158.doi: 10.16285/j.rsm.2022.0937

• 基础理论与实验研究 • 上一篇    下一篇

不同初始瓦斯压力下煤体动力学特性及其劣化特征

王磊1,陈礼鹏1,刘怀谦1, 2,朱传奇1,李少波1,范浩1, 张帅1,王安铖1   

  1. 1. 安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001;2. 中国矿业大学(北京) 能源与矿业学院,北京 100083
  • 收稿日期:2022-06-20 接受日期:2022-08-26 出版日期:2023-01-16 发布日期:2023-01-13
  • 通讯作者: 刘怀谦,男,1992年生,博士研究生,主要从事深部开采动力灾害等方面的研究。E-mail: LHQcumtb@163.com E-mail:leiwang723@126.com
  • 作者简介:王磊,男,1980年生,博士,教授,博士生导师,从事煤矿地下安全开采和深部开采动力灾害等研究工作。
  • 基金资助:
    安徽省科技重大专项项目(No. 202203a07020010);安徽高校协同创新项目(No. GXXT-2020-055)。

Dynamic behaviors and deterioration characteristics of coal under different initial gas pressures

WANG Lei1, CHEN Li-peng1, LIU Huai-qian1, 2, ZHU Chuan-qi1, LI Shao-bo1, FAN Hao1, ZHANG Shuai1, WANG An-cheng1   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2022-06-20 Accepted:2022-08-26 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by Anhui Province Science and Technology Major Special Projects (202203a07020010) and the Collaborative Innovation Funding Project of Anhui Universities (GXXT-2020-055).

摘要: 为探究不同初始瓦斯压力下煤体动力学特性及其劣化规律,利用自主研发的含瓦斯煤岩动静组合加载试验系统对含瓦斯煤开展冲击压缩试验,结合CT 扫描系统分析了含瓦斯煤内部裂隙的扩展演化规律,并基于不同初始瓦斯压力下冲击煤样内部裂隙率增量定量表征了其细观损伤程度,探讨了冲击荷载作用下含瓦斯煤宏观力学参量劣化规律。研究结果表明: (1)冲击荷载作用下含瓦斯煤动态应力−应变曲线无明显压密阶段,分为线弹性阶段、塑性硬化阶段和破坏阶段,并发现随初始瓦斯压力升高,冲击煤样峰值强度、峰值应变和弹性模量均出现弱化现象;(2)瓦斯加剧了煤体内部裂隙的扩展和贯通,并根据CT扫描结果发现,含瓦斯煤冲击破坏模式主要以劈裂和层裂破坏为主,随初始瓦斯压力升高,两种破坏模式越显著,煤体内部裂隙数量及其损伤程度逐渐增大,空间裂隙网络更为复杂;(3)基于细观层面定义了损伤变量,得其值随初始瓦斯压力升高呈现二次函数上升,对比冲击载荷作用下煤体动态强度与以裂隙率增量定义损伤程度所得理论强度,验证了细观层面煤体裂隙率增量定义损伤变量的合理性,建立了含瓦斯煤细观劣化与宏观参量损失的内在联系。研究成果丰富了含瓦斯煤动力学基础理论,为矿井煤岩瓦斯复合动力灾害的防治提供了理论参考。

关键词: 含瓦斯煤, 动力学特性, 工业CT扫描, 裂隙, 损伤变量

Abstract: In order to investigate the dynamic behaviors of coal and its deterioration law under different initial gas pressures, this study conducted impact compression experiments on gas-bearing coal by using the self-developed visualized gas-bearing coal rock dynamic and static combined loading test system, analyzed the expansion and evolution law of internal fracture in gas-bearing coal by combining with CT scanning system. Moreover, this study also quantitatively characterized the mesoscopic damage degree based on the increment of internal fracture rate of coal samples impacted under different initial gas pressures, and explored the deterioration law of macroscopic mechanical parameters of gas-bearing coal under the impact load. Some conclusions are drawn. (1) The dynamic stress-strain curves of gas-bearing coal under impact loading, which can be divided into linear elastic phase, plastic hardening phase and damage phase, have no obvious compaction phase. And it is found that the peak strength, peak strain and elastic modulus of impacted coal samples deteriorate with the increase of initial gas pressure. (2) Gas aggravates the expansion and coalescence of fractures inside the coal. CT scanning results indicate that the impact damage mode of gas-bearing coal is mainly splitting and stratified splitting damages, and the more significant the two damage modes are with the increase of initial gas pressure, so does the number of fractures and their damage degree inside the coal, which makes the spatial fracture network more complex. (3) The damage variables are defined on a mesoscopic level, and the values of damage variables show a rise of quadratic function with the increase of initial gas pressure. The comparison of the dynamic strength of coal under impact load with the theoretical strength obtained by defining the degree of damage by fracture rate increment verified the rationality of the damage variables defined by fracture rate increment of coal at the mesoscopic level. The intrinsic connection was constructed between the mesoscopic deterioration of gas-bearing coal and the loss of macroscopic parameters. The research results enrich the basic theory of gas-bearing coal dynamics and provide a theoretical reference for the prevention and control of coal-rock-gas composite dynamical hazards in mines.

Key words: gas-bearing coal, dynamic properties, industrial CT scanning, fractures, damage variables

中图分类号: 

  • TD 325
[1] 张培森, 许大强, 李腾辉, 胡昕, 赵成业, 侯季群, 牛辉, . 裂隙砂岩注浆前后渗流特性及注浆后 力学特性试验研究[J]. 岩土力学, 2023, 44(增刊): 12-26.
[2] 罗国立, 张科, 齐飞飞, 朱辉, 张凯, 刘享华, . 基于3D打印的裂隙岩体力学特性尺寸效应及各向异性初探[J]. 岩土力学, 2023, 44(增刊): 107-116.
[3] 安然, 陈欣, 张先伟, 王港, 高浩东, . 单轴加载过程中钢渣稳定土细观裂隙的动态演化特征[J]. 岩土力学, 2023, 44(增刊): 300-308.
[4] 陈笑予, 姚强岭, 陈胜焱, 山长昊, 李英虎, 徐强, 于利强, 夏泽, 朱柳, 落弘业, . 基于深部含水煤样失稳特征的荷载梁式主控裂隙模型的试验研究[J]. 岩土力学, 2023, 44(增刊): 375-386.
[5] 王凯, 付强, 徐超, 艾子博, 李丹, 王磊, 舒龙勇, . 原生煤岩组合体界面力学效应数值模拟研究[J]. 岩土力学, 2023, 44(增刊): 623-633.
[6] 高志傲, 孔令伟, 王双娇, 刘炳恒, 芦剑锋, . 平面应变条件下不同裂隙方向原状膨胀土变形破坏性状与剪切带演化特征[J]. 岩土力学, 2023, 44(9): 2495-2508.
[7] 王磊, 张帅, 刘怀谦, 陈礼鹏, 朱传奇, 李少波, 王安铖, . 冲击荷载下含瓦斯煤能量耗散及损伤破坏规律[J]. 岩土力学, 2023, 44(7): 1901-1915.
[8] 刘东东, 魏立新, 徐国元, 项彦勇, . 基于裂隙连续方法的三维裂隙岩体渗流传热数值模拟[J]. 岩土力学, 2023, 44(7): 2143-2150.
[9] 甘磊, 刘玉, 张宗亮, 沈振中, 马洪影, . 岩体裂隙粗糙度表征及其对裂隙渗流特性的影响[J]. 岩土力学, 2023, 44(6): 1585-1592.
[10] 马鹏杰, 芮瑞, 曹先振, 夏荣基, 王曦, 丁锐恒, 孙天健, . 微型桩加固长大缓倾裂隙土边坡模型试验[J]. 岩土力学, 2023, 44(6): 1695-1707.
[11] 张乐, 杨志兵, 李东奇, 陈益峰. 浆液在透明复制裂隙中驱替行为的可视化试验研究[J]. 岩土力学, 2023, 44(6): 1708-1718.
[12] 马国良, 陈曦, 范超男, 葛少成. 不同水力荷载路径下煤体微观渗流特征及宏观破坏研究[J]. 岩土力学, 2023, 44(6): 1779-1788.
[13] 冷先伦, 王川, 盛谦, 宋文军, 陈健, 张占荣, 陈菲, . 基于透明相似模型试验的主控裂隙边坡变形破坏演化机制研究[J]. 岩土力学, 2023, 44(5): 1283-1294.
[14] 王川, 冷先伦, 张占荣, 杨闯, 陈健, . 基于裂隙扩展的多级岩质边坡 开挖卸荷破坏路径分析[J]. 岩土力学, 2023, 44(4): 1190-1203.
[15] 梁东旭, 张农, 荣浩宇, . 交叉裂隙岩体裂纹扩展试验及混合有限−离散元数值模拟研究[J]. 岩土力学, 2023, 44(4): 1217-1229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵春彦,周顺华,袁建议. 基于一维和三维固结挤土桩沉降时效计算分析[J]. , 2009, 30(9): 2629 -2632 .
[2] 杨 涛,周德培,马惠民,张忠平. 滑坡稳定性分析的点安全系数法[J]. , 2010, 31(3): 971 -975 .
[3] 李文培,王明洋,范鹏贤. 基于间断位移场的隧道围岩承载能力研究[J]. , 2010, 31(8): 2441 -2447 .
[4] 张菊连,沈明荣. 基于逐步判别分析的砂土液化预测研究[J]. , 2010, 31(S1): 298 -302 .
[5] 彭明祥. 挡土墙主动土压力的库仑统一解[J]. , 2009, 30(2): 379 -386 .
[6] 羊 晔,刘松玉,邓永锋. 加筋路基处治不均匀沉降模型试验研究[J]. , 2009, 30(3): 703 -706 .
[7] 郑 刚,颜志雄,雷华阳,王晟堂. 天津市区第一海相层粉质黏土卸荷路径下强度特性的试验研究[J]. , 2009, 30(5): 1201 -1208 .
[8] 戴洪军,刘欣良,任治军,韦 华. 圆形煤场中桩-网复合地基原体试验研究[J]. , 2011, 32(2): 487 -494 .
[9] 姜清辉,邓书申,周创兵. 有自由面渗流分析的三维数值流形方法[J]. , 2011, 32(3): 879 -884 .
[10] 徐 超 ,陈忠清 ,叶观宝 ,肖媛媛 ,丁天锐. 冲击碾压法处理粉土地基试验研究[J]. , 2011, 32(S2): 389 -392 .