岩土力学 ›› 2023, Vol. 44 ›› Issue (7): 1901-1915.doi: 10.16285/j.rsm.2023.0412

• 基础理论与实验研究 • 上一篇    下一篇

冲击荷载下含瓦斯煤能量耗散及损伤破坏规律

王磊1,张帅1,刘怀谦1, 2,陈礼鹏1,朱传奇1,李少波1,王安铖1   

  1. 1. 安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001;2. 中国矿业大学(北京) 能源与矿业学院,北京 100083
  • 收稿日期:2023-04-03 接受日期:2023-05-22 出版日期:2023-07-17 发布日期:2023-07-16
  • 通讯作者: 张帅,男,1999年生,硕士研究生,主要从事深部开采灾害防治理论与技术等方面的研究。E-mail: zsaust@126.com E-mail:leiwang723@126.com
  • 作者简介:王磊,男,1980年生,博士,教授,博士生导师,从事煤矿地下安全开采和深部开采动力灾害等研究工作。
  • 基金资助:
    安徽省高校协同创新资助项目(No.GXXT-2020-055);安徽省科技重大专项项目(No.202203a07020010);国家重点研发计划资助项目(No.2020YFB1314203);深部煤矿采动响应与灾害防控国家重点实验室开放基金课题(No.SKLMRDPC22KF10)

Research on energy dissipation and damage failure law of gas-bearing coal under impact loading

WANG Lei1, ZHANG Shuai1, LIU Huai-qian1, 2, CHEN Li-peng1, ZHU Chuan-qi1, LI Shao-bo1, WANG An-cheng1   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2023-04-03 Accepted:2023-05-22 Online:2023-07-17 Published:2023-07-16
  • Supported by:
    This work was supported by the Collaborative Innovation Funding Project of Anhui Universities(GXXT-2020-055), Anhui Province Science and Technology Major Special Projects(202203a07020010), the National Key Research and Development Program(2020YFB1314203) and the Open Fund Project of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC22KF10).

摘要: 为探究冲击荷载下含瓦斯煤体动态响应差异,利用可视化含瓦斯煤分离式霍普金森压杆试验系统,对不同初始瓦斯压力下的煤体进行动态冲击试验,分析了不同瓦斯赋存状态下煤体能量耗散规律,并借助超高速摄像机和数字图像相关(digital image correlation,简称DIC)技术阐述冲击过程含瓦斯煤表面裂纹演化特征,结合分形理论获得了瓦斯压力对破碎煤体分形特征的影响,揭示了瓦斯赋存状态与破碎煤体特征尺寸的内在联系。结果表明:冲击荷载下,含瓦斯煤体应力−应变曲线基于能量耗散规律大致可分为4个阶段,瓦斯对煤体劣化作用显著,破碎耗能与破碎耗能密度随初始瓦斯压力增加均呈指数函数减小;受瓦斯气楔效应影响,冲击荷载下含瓦斯煤体应变场演化更为复杂,煤体破坏逐步从横向层裂破坏演变为横向层裂−纵向劈裂的复合型破坏;瓦斯压力作用下,煤体内部损伤加剧,破坏失稳后,破碎煤体平均粒径及破碎块度尺寸随初始瓦斯压力增加而逐渐减小,但分形维数呈指数函数增加,煤体破碎程度更加剧烈;构建了基于煤体破碎过程中能量消耗守恒的多维动态含瓦斯煤破碎模型,结合试验数据验证了模型的合理性,可较好地描述受瓦斯影响下的破碎煤样特征尺寸。研究成果对矿井煤岩瓦斯动力灾害防治具有重要的理论意义和一定的应用前景。

关键词: 含瓦斯煤, 冲击荷载, 能量耗散, 数字图像相关, 分形特征, 破碎模型

Abstract: In order to explore the difference in dynamic response of gas-bearing coal under impact loading, an observable gas-bearing coal split Hopkinson pressure bar (SHPB) test system was used to conduct uniaxial impact tests on coal bodies with different initial gas pressures. The energy dissipation law of the coal under different gas occurrence states was analyzed, and with the help of ultra-high-speed camera and digital image correlation (DIC) technology, the evolution characteristics of cracks on the surface of gas-bearing coal during the impact process were demonstrated. Combined with fractal theory, the influence of gas pressure on the fractal characteristics of crushed coal was obtained, and the intrinsic relationship between gas occurrence state and the characteristic size of crushed coal was revealed. The results show that under the impact loading, the stress-strain curve of the gas-bearing coal could be roughly divided into four stages based on the energy dissipation law. The deterioration effect of gas on the coal body was significant, and the crushing energy dissipation and crushing energy dissipation density function decreased exponentially with the increase of the initial gas pressure. Under the gas wedge effect, the evolution of the strain field of the gas-bearing coal subjected to the impact loading was more complicated, and the coal body damage gradually evolved from the transverse splitting failure to the composite transverse splitting-longitudinal splitting failure. Under the action of gas pressure, the internal damage of the coal body was intensified. After the failure, the average particle size and fragmented block size of the fragmented coal body gradually decreased with the increase in initial gas pressure. However, the fractal dimension increased exponentially, and the degree of coal body crushing was more intense. A multi-dimensional dynamic gas-bearing coal crushing model based on the conservation of energy consumption in the coal body crushing process was constructed, and combined with experimental data, the model was validated and it could better describe the characteristic dimensions of fragmented coal samples under the influence of gas. The research results have important theoretical significance and certain application prospects for the prevention and control of dynamic disasters in gas-bearing coal mines.

Key words: gas-bearing coal, impact loading, energy dissipation, digital image correlation (DIC), fractal characteristics, crushing model

中图分类号: 

  • TD712
[1] 姜明归, 孙伟, 李金鑫, 樊锴, 刘增, . 冲击荷载下全尾砂胶结充填体断裂特性与能耗特征分析[J]. 岩土力学, 2023, 44(增刊): 186-196.
[2] 彭阳, 高永涛, 王文林, 甫尔卡特, 温建敏, 周喻, . 单侧限压缩煤岩组合体的破裂机制研究[J]. 岩土力学, 2023, 44(增刊): 387-398.
[3] 刘勇健, 傅杨攀, 赖明洋, 李彰明, 方昊圆, 谢治堃, . 冲击荷载下土体动力响应与加载速率效应研究[J]. 岩土力学, 2023, 44(9): 2485-2494.
[4] 高志傲, 孔令伟, 王双娇, 刘炳恒, 芦剑锋, . 平面应变条件下不同裂隙方向原状膨胀土变形破坏性状与剪切带演化特征[J]. 岩土力学, 2023, 44(9): 2495-2508.
[5] 卢钦武, 关振长, 林林, 吴淑婧, 宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究[J]. 岩土力学, 2023, 44(8): 2318-2326.
[6] 赵光明, 刘之喜, 孟祥瑞, 张若飞, 顾清恒, 戚敏杰, . 真三轴循环主应力作用下砂岩能量演化规律[J]. 岩土力学, 2023, 44(7): 1875-1890.
[7] 冉龙洲, 袁松, 王希宝, 王峥峥, 张生, . 明棚洞落石冲击荷载计算方法研究[J]. 岩土力学, 2023, 44(6): 1748-1760.
[8] 王磊, 陈礼鹏, 刘怀谦, 朱传奇, 李少波, 范浩, 张帅, 王安铖, . 不同初始瓦斯压力下煤体动力学特性及其劣化特征[J]. 岩土力学, 2023, 44(1): 144-158.
[9] 陈磊, 张广清, 张敏, 曹庾杰, 谌立吉, . 水力裂缝穿越非连续面扩展时的断裂过程研究[J]. 岩土力学, 2023, 44(1): 159-170.
[10] 侯永强, 尹升华, 杨世兴, 张敏哲, 刘洪斌, . 动态荷载下胶结充填体力学响应及能量 损伤演化过程研究[J]. 岩土力学, 2022, 43(S1): 145-156.
[11] 彭守建, 张倩文, 许江, 陈奕安, 陈灿灿, 曹琦, 饶豪魁, . 基于三维数字图像相关技术的砂岩渗流-应力 耦合变形局部化特性试验研究[J]. 岩土力学, 2022, 43(5): 1197-1206.
[12] 史旦达, 俞快, 毛逸瑶, 原媛, 郝冬雪, 胡伟, . 松砂中双叶片螺旋锚上拔承载 及土体变形特性试验研究[J]. 岩土力学, 2022, 43(11): 3059-3072.
[13] 金爱兵, 王杰, 陈帅军, 李海, . 基于不同粒径分布尾砂的充填体强度及 损伤特性研究[J]. 岩土力学, 2022, 43(11): 3083-3093.
[14] 李地元, 高飞红, 刘 濛, 马金银. 动静组合加载下含孔洞层状砂岩破坏机制探究[J]. 岩土力学, 2021, 42(8): 2127-2140.
[15] 齐飞飞, 张科, 谢建斌, . 基于DIC技术的含不同节理密度类岩石试件 破裂机制研究[J]. 岩土力学, 2021, 42(6): 1669-1680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .