岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 186-196.doi: 10.16285/j.rsm.2022.0926

• 基础理论与实验研究 • 上一篇    下一篇

冲击荷载下全尾砂胶结充填体断裂特性与能耗特征分析

姜明归1, 2,孙伟1, 2,李金鑫1, 2,樊锴1, 2,刘增1, 2   

  1. 1. 昆明理工大学 国土资源工程学院,云南 昆明 650093; 2. 云南理工大学 云南省中?德蓝色矿山与特殊地下空间开发利用重点实验室,云南 昆明 650093
  • 收稿日期:2022-06-14 接受日期:2022-10-12 出版日期:2023-11-16 发布日期:2023-11-16
  • 通讯作者: 孙伟,男,1983年生,博士,教授,博士生导师,主要从事膏体充填及矿山废弃资源化方面的研究工作。E-mail:kmustsw@qq.com E-mail:2794004201@qq.com
  • 作者简介:姜明归,男,1997年生,博士研究生,主要从事膏体充填绿色开采等方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51964023);云南省重大科技项目(No. 202202AG050014);云南省基础研究计划(No. 202101BE070001–038,No. 202201AT070146)

Analysis of fracture characteristics and energy consumption of full tailings cemented backfill under impact load

JIANG Ming-gui1,2, SUN Wei1,2, LI Jin-xin1,2, FAN Kai1,2, LIU Zeng1,2   

  1. 1. Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; 2. Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
  • Received:2022-06-14 Accepted:2022-10-12 Online:2023-11-16 Published:2023-11-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51964023), the Yunnan Major Scientific and Technological Projects (202202AG050014) and the Yunnan Fundamental Research Projects (202101BE070001-038, 202201AT070146).

摘要: 为研究冲击荷载作用下全尾砂胶结充填体断裂特性及能耗特征,借助分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)试验系统,开展中等应变率下不同灰砂比充填体的单轴冲击试验。结果表明:灰砂比相同时,充填体的峰前应变能、吸收能、峰前应变能密度及吸能密度均随入射能的增加呈指数函数递增规律;当入射能小于16 J时,灰砂比为1︰6的充填体的吸能密度、峰前应变能密度、吸收能及峰前应变能比灰砂比1︰4与1︰8的更大;相同峰值强度、入射能、峰前应变能及吸收能下,充填体的断裂韧度均随灰砂比的增大而逐渐增大;充填体的断裂韧度随着动态峰值强度、吸能密度及峰前应变能密度的增加呈线性增长,而随着入射能、峰前应变能及吸收能的增加呈指数函数递增规律,灰砂比为1︰4的充填体断裂韧度随吸能密度、峰前应变能密度的增幅是灰砂比为1︰6和1︰8的2~3倍;基于应变能密度、能耗与应变的增长规律,可将充填体的损伤破坏演化过程划分为非线性压密、线弹性变形、弹塑性变形、峰后破坏4个阶段;通过对充填体试验结果回归分析,从能耗角度得出充填体断裂韧度的计算公式,可为井下充填体的稳定性分析提供参考。

关键词: 充填体, 断裂韧度, 能量耗散, 冲击荷载, 应变能密度, 吸能密度

Abstract: In order to study the fracture characteristics and energy consumption characteristics of the fully tailings cemented backfill under impact loading, uniaxial impact tests on fillers with different cement-sand ratios at moderate strain rates were carried out with the help of a split Hopkinson pressure bar (SHPB) test system. The results show that the pre-peak strain energy, absorbed energy, prepeak strain energy density and absorbed energy density of the backfill body all increase exponentially as increase of incident energy when the cement-sand ratio is the same. When the incident energy is less than 16 J, the absorbed energy density, pre-peak strain energy density, absorbed energy and pre-peak strain energy of the backfill body with the cement-sand ratio of 1:6 are greater than those of the cement-sand ratio of 1:4 and 1:8. The fracture toughness of the backfill body gradually grows with the increase of the cement-sand ratio for the same peak strength, incident energy, pre-peak strain energy and absorption energy. The fracture toughness of the backfill body increases linearly with the increase of dynamic peak strength, absorbed energy density and pre-peak strain energy density, and increases exponentially with the increase of incident energy, pre-peak strain energy and absorbed energy. The increase of fracture toughness with energy absorption density and pre-peak strain energy density of the filled body with cement -sand ratio of 1:4 is two to three times that of cement-sand ratios of 1:6 and 1:8. Based on the growth law of strain energy density, energy consumption and strain, the damage and failure evolution process of the backfill can be divided into four stages: nonlinear compression, linear elastic deformation, elasto-plastic deformation and post-peak damage. Through regression analysis of the backfill body test results, a calculation formula for the fracture toughness is derived from the perspective of energy consumption, which can provide a reference for the stability analysis of the underground backfill body.

Key words: back fill body, fracture toughness, energy dissipation, impact load, strain energy density, energy absorption density

中图分类号: 

  • TU 452
[1] 张宪尚, 文光才, 朱哲明, 隆清明, 刘杰, . 冲击荷载下充填节理岩体I型裂纹动态扩展特性研究[J]. 岩土力学, 2024, 45(2): 396-406.
[2] 尚德磊, 陈进帆, 褚鹏, . 岩石张拉裂缝与充填胶结裂隙的相互作用[J]. 岩土力学, 2023, 44(S1): 319-331.
[3] 刘勇健, 傅杨攀, 赖明洋, 李彰明, 方昊圆, 谢治堃, . 冲击荷载下土体动力响应与加载速率效应研究[J]. 岩土力学, 2023, 44(9): 2485-2494.
[4] 赵光明, 刘之喜, 孟祥瑞, 张若飞, 顾清恒, 戚敏杰, . 真三轴循环主应力作用下砂岩能量演化规律[J]. 岩土力学, 2023, 44(7): 1875-1890.
[5] 王磊, 张帅, 刘怀谦, 陈礼鹏, 朱传奇, 李少波, 王安铖, . 冲击荷载下含瓦斯煤能量耗散及损伤破坏规律[J]. 岩土力学, 2023, 44(7): 1901-1915.
[6] 冉龙洲, 袁松, 王希宝, 王峥峥, 张生, . 明棚洞落石冲击荷载计算方法研究[J]. 岩土力学, 2023, 44(6): 1748-1760.
[7] 侯永强, 尹升华, 杨世兴, 张敏哲, 刘洪斌, . 动态荷载下胶结充填体力学响应及能量 损伤演化过程研究[J]. 岩土力学, 2022, 43(S1): 145-156.
[8] 马秋峰, 刘志河, 秦跃平, 田静, 王树立, . 基于能量耗散理论的岩石塑性-损伤本构模型[J]. 岩土力学, 2021, 42(5): 1210-1220.
[9] 王爱文, 高乾书, 潘一山, . 煤层钻孔降倾-控变-耗能防冲机制试验研究[J]. 岩土力学, 2021, 42(5): 1230-1244.
[10] 卢浩, 冯夏庭, 杨成祥, 张希巍, . 不同预制裂缝方法及长度对岩石三点弯曲 试验的影响[J]. 岩土力学, 2021, 42(4): 1115-1125.
[11] 熊仲明, 吕世鸿, 李运良, 赵奇峰, 李进, 谭书舜, 张向荣, 朱玉荣, 姜磊, 杨琪凡, 张宁波, 张子栋. 被动围压下黄土动态力学性能与能量耗散研究[J]. 岩土力学, 2021, 42(3): 775-782.
[12] 金爱兵, 巨有, 孙浩, 赵怡晴, 李海, 张舟, 陆通, . 相变储能充填体孔隙结构及强度劣化机制研究[J]. 岩土力学, 2021, 42(10): 2623-2633.
[13] 吴顺川, 孙伟, 刘洋, 成子桥, 许学良, . Ⅰ型断裂韧度模拟方法及细观影响因素研究[J]. 岩土力学, 2020, 41(8): 2536-2546.
[14] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[15] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂 影,栾茂田,唐小微,郭 莹,张振东1,宋岩新. 超固结黏土单调和耦合循环的剪切特性研究[J]. , 2009, 30(9): 2616 -2622 .
[2] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[3] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[4] 王学武,许尚杰,党发宁,程素珍. 水位骤降时的非饱和坝坡稳定分析[J]. , 2010, 31(9): 2760 -2764 .
[5] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .
[6] 杨 骁,蔡雪琼. 考虑横向效应饱和黏弹性土层中桩的纵向振动[J]. , 2011, 32(6): 1857 -1863 .
[7] 胡向前 ,焦志斌 ,李运辉. 打设排水板后饱和软黏土中打桩引起的孔隙水压力分布及消散规律[J]. , 2011, 32(12): 3733 -3737 .
[8] 李 宁 ,许建聪 ,钦亚洲 . 降雨诱发浅层滑坡稳定性的计算模型研究[J]. , 2012, 33(5): 1485 -1490 .
[9] 邓建辉,魏进兵,闵 弘. 基于强度折减概念的滑坡稳定性三维分析方法(I):滑带土抗剪强度参数反演分析[J]. , 2003, 24(6): 896 -900 .
[10] 李 萍 ,李同录 ,王 红, 梁 燕, . 非饱和黄土土-水特征曲线与渗透系数Childs & Collis-Geroge模型预测[J]. , 2013, 34(S2): 184 -189 .