岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1695-1707.doi: 10.16285/j.rsm.2022.1130

• 基础理论与实验研究 • 上一篇    下一篇

微型桩加固长大缓倾裂隙土边坡模型试验

马鹏杰1,芮瑞2, 3,曹先振1,夏荣基2,王曦1,丁锐恒2,孙天健2   

  1. 1. 中国南水北调集团中线有限公司渠首分公司,河南 南阳 474599;2. 武汉理工大学 土木工程与建筑学院,湖北 武汉 430070; 3. 武汉理工大学 三亚科教创新园,海南 三亚 572025
  • 收稿日期:2022-07-19 接受日期:2022-10-26 出版日期:2023-06-14 发布日期:2023-06-14
  • 通讯作者: 芮瑞,男,1981年生,博士,教授,主要从事岩土工程加固与地基处理技术的研究与教学工作。E-mail: r.rui@whut.edu.cn E-mail:70023524@qq.com
  • 作者简介:马鹏杰,男,1983年生,学士,工程师,主要从事水利工程运行、施工技术方面的工作。
  • 基金资助:
    国家自然科学基金(No.42272315);国家级大学生创新训练项目(No.202210497387)。

Model tests of micropile-reinforced soil slope with long and gently inclined fissures

MA Peng-jie1, RUI Rui2, 3, CAO Xian-zhen1, XIA Rong-ji2, WANG Xi1, DING Rui-heng2, SUN Tian-jian2   

  1. 1. Head Section, Middle Branch of China South-to-North Water Diversion Co., Ltd., Nanyang, Henan 474599, China; 2. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China; 3. Science Education Innovation Park, Wuhan University of Technology, Sanya, Hainan 572025, China
  • Received:2022-07-19 Accepted:2022-10-26 Online:2023-06-14 Published:2023-06-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42272315) and the National Innovation Training Program for College Students (202210497387).

摘要: 南水北调工程中大量膨胀土边坡因其内部的长大缓倾裂隙而发生滑动,其抢险与加固工程中微型桩取得了较好的应用效果。研究微型桩加固长大缓倾裂隙土边坡的加固机制及其参数影响,对此类工程的微型桩加固设计具有重要意义。以微型桩加固膨胀土边坡的实际工程为背景,采取对边坡滑体沿裂隙面平行方向施加推力的方式,开展了不同缓倾裂隙面角度的未加桩边坡推移破坏试验,并以桩长、排间距和桩位为影响参数,进行了微型桩加固长大缓倾裂隙土边坡的参数影响模型试验,对边坡的位移特征以及微型桩的受力特性与加固效应进行了分析。结果表明:微型桩对于缓倾裂隙边坡具有较好的抗滑加固效果,能够将抗滑阻力维持在较高的水平。微型桩能提供的抗滑阻力随桩长(锚固比)增加而增加,但提升效率随桩长增加而减小。建议布置在边坡上1/3处的微型桩锚固比取值为0.5,布置在边坡下1/3处的微型桩锚固比取值不小于0.65。桩身弯矩与剪力均呈反S形分布,最大值均位于裂隙面附近。双排桩使得边坡抵抗破坏的韧性增强,当排距为200 mm(10倍桩径)时,前后排桩协调较好,均能较为充分地发挥抗滑作用,对边坡抗滑推力提升较大。

关键词: 微型桩, 缓倾裂隙, 土质边坡, 相似模型试验, 受力特性

Abstract: In the South-to-North Water Diversion Project, a large number of expansive soil slopes slid due to the long and gently inclined fissures. The micropiles had achieved good application in the rescue and reinforcement project of the expansive soil slopes. The study on the reinforcement mechanism and the influence of parameters of micropiles in reinforcing the soil slope with long and gently inclined fissures is of great significance for the design of such projects. Based on the actual project of reinforcing expansive soil slope with micropiles, the thrust was applied on the sliding body along the direction of the fissure surface, and the failure tests of the non-piled slope with different angles of the gently inclined fissure were carried out. After taking the pile length, row spacing and pile position as influence parameters, the model tests of micropile-reinforced soil slope with long and gently inclined fissures were carried out, the displacement characteristics of the slope and the stress characteristics and the reinforcement effect of the micropile were analyzed. The test results showed that the micropile had a good anti-slide reinforcement effect for the slope with gently inclined fissures, and could maintain the anti-slide resistance at a high level. The anti-slide resistance provided by micropiles increased with the increase of pile length (anchorage ratio), while the increase efficiency decreased with the increase of pile length. It was suggested that the anchorage ratio of micropiles should be 0.5 when the pile is arranged at upper 1/3 position of the slope, and less than 0.65 when it is arranged at lower 1/3 position of the slope. The distribution of bending moment and shear force of the piles was reversed S-shape, and the maximum values were located near the fissure surface. The double-row piles can enhance the toughness of the slope to resist damage. When the row spacing was 200 mm (10 times the pile diameter), the front and rear rows of piles can well coordinate, which could give full play to the anti-slide effect and greatly increased the anti-slide thrust of the slope.

Key words: micropile, gently inclined fissure, soil slope, similarity model test, mechanical behaviors

中图分类号: 

  • TU473.1
[1] 张院生, 雷云超, 强小俊, 吴东东, 王东坡, 王计华, . 多排微型桩框架结构加固边坡离心模型试验研究[J]. 岩土力学, 2023, 44(7): 1983-1994.
[2] 宋洋, 王宏帅, 李昂, 王鑫, 肖作明, 苑强, . 富水粉细砂层盾尾同步注浆浆液渗透-压密扩散机制研究[J]. 岩土力学, 2023, 44(5): 1319-1329.
[3] 孙志豪, 谭晓慧, 孙志彬, 林鑫, 姚玉川, . 基于上限分析的空间变异土质边坡可靠度[J]. 岩土力学, 2021, 42(12): 3397-3406.
[4] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[5] 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436.
[6] 丁潇, 谷拴成, 何晖, 张玉, . 单/多离层作用下锚杆受力特性分析[J]. 岩土力学, 2019, 40(11): 4299-4305.
[7] 吴红刚, 武志信, 谢显龙, 牌立芳, . 土质边坡微型桩组合结构大型振动台试验研究[J]. 岩土力学, 2019, 40(10): 3844-3854.
[8] 武志信, 吴红刚, 赖天文, 李玉瑞, 牌立芳, . 微型桩加固土质边坡的动土压力响应 及其频谱特性研究[J]. 岩土力学, 2019, 40(10): 3909-3919.
[9] 张文生, 罗 强, 蒋良潍, 李 昂, . 小样本岩土参数下考虑矩估计偏差的 土质边坡可靠度分析[J]. 岩土力学, 2019, 40(1): 315-324.
[10] 宗钟凌,鲁先龙,李青松,. 静压钢管注浆微型桩抗压与抗拔对比试验研究[J]. , 2018, 39(S1): 362-368.
[11] 张小艳,张立翔,李 泽,. 基于塑性极限分析上限法理论的土质边坡可靠度分析[J]. , 2018, 39(5): 1840-1849.
[12] 李 泽,刘 毅,周 宇,王均星,. 基于混合离散的砌石挡土墙边坡极限承载力下限分析[J]. , 2018, 39(3): 1100-1108.
[13] 王 洋,冯 君,谢先当,赖 冰,杨 涛,. 微型桩组合抗滑结构受力机制的现场试验研究[J]. , 2018, 39(11): 4226-4231.
[14] 宗钟凌,鲁先龙,李青松,张振东,. 静压钢管注浆微型桩承载性能试验研究[J]. , 2017, 38(S2): 323-329.
[15] 连继峰,罗 强,谢 涛. 顺坡渗流下矩形骨架护坡浅层稳定性[J]. , 2017, 38(S1): 61-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .