岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 385-395.doi: 10.16285/j.rsm.2023.1280

• 基础理论与实验研究 • 上一篇    下一篇

不同应力路径下层理煤体力学特性试验研究

范浩1,王磊1,王连国2   

  1. 1. 安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001; 2. 中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116
  • 收稿日期:2023-08-28 接受日期:2023-10-25 出版日期:2024-02-11 发布日期:2024-02-06
  • 通讯作者: 王磊,男,1980年生,博士,教授,博士生导师,主要从事煤矿地下安全开采方面的研究。E-mail:leiwang723@126.com
  • 作者简介:范浩,男,1992年生,博士,讲师,主要从事煤矿采动岩石力学方面的研究。fanhao2014@126.com
  • 基金资助:
    安徽省高校自然科学研究重点项目(No. KJ2021A0457);安徽省科技重大专项(No. 202203a07020010);安徽理工大学引进人才科研启动基金(No. 2021yjrc15)

Experimental study on mechanical properties of bedding coal under different stress paths

FAN Hao1, WANG Lei1, WANG Lian-guo2   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2023-08-28 Accepted:2023-10-25 Online:2024-02-11 Published:2024-02-06
  • Supported by:
    This work was supported by the Natural Science Research Project of Anhui Educational Committee (KJ2021A0457), the Anhui Provincial Major Science and Technology Project (202203a07020010) and the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (2021yjrc15).

摘要: 为探究不同应力路径下层理煤体力学特性和破坏特征,利用MTS816岩石力学试验系统对0°、30°、45°、60°和90°层理倾角煤样开展了常规三轴加载、增轴压卸围压和恒轴压卸围压应力路径下的力学试验,分析了应力路径和层理倾角对煤样强度、变形及破坏特征的影响规律。研究结果表明:(1)常规三轴加载条件下煤样在达到峰值强度前,应力-应变曲线呈近线性关系,达到峰值强度后,应力-应变曲线迅速跌落;增轴压卸围压条件下,随着卸荷比的增加,轴向应变增量比呈线性增加趋势,而环向应变增量比和体积应变增量比呈低速增长-急剧增长-平稳增长的三阶段变化特征;恒轴压卸围压条件下,轴向应变增量比、环向应变增量比和体积应变增量比均呈低速增长-急剧增长的两阶段变化特征。(2)随着层理倾角的增加,不同应力路径下煤样峰值强度和轴向峰值应变均呈先减小后增大的V型变化趋势,在0°时达到最大值,在60°时达到最小值。(3)随着卸荷比的增大,煤样变形模量先平缓后迅速劣化,泊松比先缓慢增加后呈指数形式增加,临界卸荷比随层理倾角的增大先增加后减小;当层理倾角相同时,增轴压卸围压条件下的临界卸荷比低于恒轴压卸围压。(4)常规三轴加载条件下煤样发生脆性剪切破坏,增轴压卸围压和恒轴压卸围压条件下煤样呈张拉-剪切混合破坏模式,当层理倾角为60°时,煤样主剪切破裂面角度与层理倾角几乎一致。

关键词: 应力路径, 层理煤体, 力学特性, 破坏特征, 卸荷比

Abstract: To investigate the mechanical properties and failure characteristics of bedding coal under different stress paths, mechanical tests were conducted using the MTS816 rock mechanics testing system. Coal samples with bedding angles of 0°, 30°, 45°, 60°, and 90° were subjected to tests under three stress paths: conventional triaxial loading, increasing axial pressure unloading confining pressure, and constant axial pressure unloading confining pressure. The study analyzed the influence of stress paths and bedding angles on the strength, deformation, and failure characteristics of the coal samples. The results indicate the following: Under the path of conventional triaxial loading, the stress-strain curves of the coal samples show a nearly linear relationship before reaching the peak point, followed by a rapid drop in stress after reaching the peak. Under the path of increasing axial pressure unloading confining pressure, the axial strain increment ratio exhibits a linear increasing trend as the unloading ratio increases. The circumferential strain increment ratio and volumetric strain increment ratio display a three-stage change characteristic, involving low-speed growth, rapid growth, and stable growth. Under the path of constant axial pressure unloading confining pressure, the axial strain increment ratio, circumferential strain increment ratio, and volumetric strain increment ratio exhibit a two-stage change characteristic, involving low-speed growth and rapid growth. The peak strength and axial peak strain of the coal samples exhibit a V-shaped trend with increasing bedding angle under different stress paths. They initially decrease and then increase, reaching the maximum value at 0° and the minimum value at 60°. As the unloading ratio increases, the deformation modulus of the coal sample initially stabilizes and then rapidly deteriorates. The Poisson’s ratio first slowly increases and then exponentially increases. The critical unloading ratio initially increases and then decreases with increasing bedding angle. When the bedding angle is the same, the critical unloading ratio under the path of increasing axial pressure unloading confining pressure is lower than that under the path of constant axial pressure unloading confining pressure. Under the path of conventional triaxial loading, the coal sample undergoes brittle shear failure. However, under the paths of increasing axial pressure unloading confining pressure and constant axial pressure unloading confining pressure, the coal sample exhibits a mixed tensile-shear failure mode. When the bedding angle is 60°, the angle of the main shear fracture surface of the coal sample is almost consistent with the bedding angle.

Key words: stress path, bedding coal, mechanical properties, fracture characteristics, unloading ratio

中图分类号: 

  • TD 821
[1] 蒋济泽, 王成龙, 黄煜镔, 赵华, 陈志雄, . 竖向和水平组合荷载下能量桩单桩变形特性[J]. 岩土力学, 2024, 45(3): 788-796.
[2] 张培森, 许大强, 李腾辉, 胡昕, 赵成业, 侯季群, 牛辉, . 裂隙砂岩注浆前后渗流特性及注浆后 力学特性试验研究[J]. 岩土力学, 2023, 44(S1): 12-26.
[3] 李尧, 李嘉评. 复杂初始应力状态下松砂多向循环单剪特性[J]. 岩土力学, 2023, 44(9): 2555-2565.
[4] 姬楠, 吴祥云, 任辉启, 翟超辰, 张跃飞, 赵荣国, 聂晓东, . 岩石中平面装药爆炸作用下不同高跨比结构抗爆性能试验研究[J]. 岩土力学, 2023, 44(8): 2276-2286.
[5] 张季如, 郑颜军, 彭伟珂, 王磊, 陈敬鑫. 填土应力路径下珊瑚砂幂律应力-应变模型的适用性研究[J]. 岩土力学, 2023, 44(5): 1309-1318.
[6] 崔瑜瑜, 吴立鹏, 沈兴华, 王兴召, 秦亚琼, 刘杰, 卢正, 吴磊, . 粉质黏土基坑卸荷隆起变形的简化计算方法[J]. 岩土力学, 2023, 44(5): 1425-1434.
[7] 王家全, 仲文涛, 黄世斌, 唐毅, . 模块式加筋土挡墙模型试验及静动力学性能研究[J]. 岩土力学, 2023, 44(5): 1435-1444.
[8] 杨忠平, 李进, 刘浩宇, 张益铭, 刘新荣, . 土石混合体−基岩界面剪切力学特性块石尺寸效应[J]. 岩土力学, 2023, 44(4): 965-974.
[9] 王伟, 张宽, 曹亚军, 陈超, 朱其志, . 层状千枚岩各向异性力学特性与脆性评价研究[J]. 岩土力学, 2023, 44(4): 975-989.
[10] 梁靖宇, 沈万涛, 路德春, 齐吉琳, . 考虑沉积角影响的冻结砂土单轴压缩试验研究[J]. 岩土力学, 2023, 44(4): 1065-1074.
[11] 张平, 任松, 张闯, 吴斐, 隆能增, 李凯鑫, . 循环扰动和高温作用下砂岩的岩爆倾向性及破坏特征研究[J]. 岩土力学, 2023, 44(3): 771-783.
[12] 荣浩宇, 王伟, 李桂臣, 许嘉徽, 梁东旭, . 岩石−锚固剂结构水化失稳微观力学特性[J]. 岩土力学, 2023, 44(3): 784-798.
[13] 舒荣军, 孔令伟, 周振华, 简涛, 李甜果, . 卸荷-增孔压条件下花岗岩残积土的力学特性[J]. 岩土力学, 2023, 44(2): 473-482.
[14] 胡南燕, 黄建彬, 罗斌玉, 李雪雪, 陈敦熙, 曾子懿, 付晗, 娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究[J]. 岩土力学, 2023, 44(12): 3471-3480.
[15] 康佐, 亢佳伟, 邓国华, . 欠压密饱和黄土基本物理力学性质研究[J]. 岩土力学, 2023, 44(11): 3117-3127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .