›› 2010, Vol. 31 ›› Issue (10): 3179-3183.

• 岩土工程研究 • 上一篇    下一篇

挡土墙主动土压力塑性临界深度的解析解

彭明祥   

  1. 广东省电力设计研究院,广州 510663
  • 收稿日期:2009-03-20 出版日期:2010-10-10 发布日期:2010-10-14
  • 作者简介:彭明祥,男,1964年生,硕士,高级工程师,注册岩土工程师,注册港口与航道工程师,主要从事水工结构和岩土工程的设计研究工作。

Analytical solution of plastic critical depth for active earth pressure on retaining wall

PENG Ming-xiang   

  1. Guangdong Electric Power Design Institute, Guangzhou 510663,China
  • Received:2009-03-20 Online:2010-10-10 Published:2010-10-14

摘要:

墙后塑性区的临界深度问题一直没有得到很好解决,传统计算公式仅适用于一些特殊情况。基于极限平衡理论,视墙后填土为服从Mohr-Coulomb屈服准则的理想弹塑性材料,假定塑性区的一族滑移线为直线即平面滑裂面,提出弹性覆盖层取代传统的张拉裂缝,建立了较为完善的滑楔分析模型,采用极限平衡法推导了在一般情况下的塑性临界压力、临界深度以及塑性区可能最大深度的解析解。计算结果表明,塑性临界深度的解析解与目前文献采用迭代计算的结果完全一致,传统计算公式是该解析解的一个特例。

关键词: 挡土墙, 主动土压力, 塑性临界压力, 塑性临界深度, 可能最大深度, 弹性覆盖层

Abstract:

The problem of critical depth for plastic zone behind the retaining wall has not yet been solved well. The conventional calculation formula is only applicable for some special cases. This paper is based on the limit equilibrium theory, in which the backfill is treated as a perfectly elastoplastic material following the Mohr-Coulomb yield criterion; and it is assumed that a family of slip lines in the plastic zone are straight lines, i.e. the plane slip surfaces. The elastic overburden is put forward to replace the conventional tension crack; and a more reasonable slip wedge analysis model is established. The analytical solutions of the plastic critical pressure and critical depth and the possible maximum depth in plastic zone for active earth pressure on retaining wall in general case are deduced using limit equilibrium method. The calculation results show that the analytical solution of the plastic critical depth is identical with the result by iterative calculation in existing literatures and the conventional calculation formula is a special case of this analytical solution.

Key words: retaining wall, active earth pressure, plastic critical pressure, plastic critical depth, possible maximum depth, elastic overburden

中图分类号: 

  • TU 432
[1] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[2] 芮 瑞, 叶雨秋, 陈 成, 涂树杰. 考虑墙壁摩擦影响的挡土墙 主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797-1804.
[3] 刘 洋, 于鹏强. 刚性挡土墙平移模式的土拱形状 与主动土压力分析[J]. 岩土力学, 2019, 40(2): 506-516.
[4] 张晓曦, 何思明, 樊晓一, . L型挡土墙滑裂面确定方法与地震稳定性分析[J]. 岩土力学, 2019, 40(10): 4011-4020.
[5] 刘美麟,侯艳娟,张顶立,房 倩. 砂土地层中考虑基坑施工效应的柔性挡墙主动土压力研究[J]. , 2018, 39(S1): 149-158.
[6] 李兆华,胡 杰,冯吉利,龚文俊. 基于黏弹塑性本构模型的泥石流数值模拟[J]. , 2018, 39(S1): 513-520.
[7] 杨山奇,卢坤林,史克宝,赵瀚天,陈一鸣,. 刚性挡土墙后三维被动滑裂面的模型试验[J]. , 2018, 39(9): 3303-3312.
[8] 李 泽,刘 毅,周 宇,王均星,. 基于混合离散的砌石挡土墙边坡极限承载力下限分析[J]. , 2018, 39(3): 1100-1108.
[9] 闫澍旺,李 嘉,闫 玥,郎瑞卿,纪玉诚, . 轴对称主动土压力问题的滑移线解[J]. , 2018, 39(11): 4133-4141.
[10] 陈祖煜,黎康平,李 旭,詹成明,. 重力式挡土墙抗滑稳定容许安全系数取值标准初探[J]. , 2018, 39(1): 1-10.
[11] 杨 贵,王阳阳,刘彦辰, . 基于曲线滑裂面的挡墙主动土压力分析[J]. , 2017, 38(8): 2182-2188.
[12] 杨明辉,戴夏斌,赵明华,罗 宏. 曲线滑裂面下有限宽度填土主动土压力计算[J]. , 2017, 38(7): 2029-2035.
[13] 骆 晗,李荣建,刘军定,霍旭挺,张 真,孙 萍,. 基于联合强度的黄土主动土压力公式与计算比较[J]. , 2017, 38(7): 2080-2086.
[14] 张 健,王新征,胡瑞林,. 无限倾斜填土非竖直墙背条件下地震主动土压力计算[J]. , 2017, 38(4): 1069-1074.
[15] 刘忠玉,陈 捷,李东阳,. 考虑剪应力作用的刚性挡土墙主动土压力分析[J]. , 2016, 37(9): 2443-2450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏龙海,王明年,赵东平,吉艳雷. 翔安海底公路隧道陆域段变形控制措施研究[J]. , 2010, 31(2): 577 -581 .
[2] 陈 宇,张庆贺,朱继文,姚海明. 双圆盾构穿越下立交结构的流-固耦合数值模拟[J]. , 2010, 31(6): 1950 -1955 .
[3] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[4] 高树生,钱根宝,王 彬,杨作明,刘华勋. 新疆火山岩双重介质气藏供排气机理数值模拟研究[J]. , 2011, 32(1): 276 -280 .
[5] 宋勇军,胡 伟,王德胜,周军林. 基于修正剑桥模型的挤密桩挤土效应分析[J]. , 2011, 32(3): 811 -814 .
[6] 孙德安,孟德林,孙文静,刘月妙. 两种膨润土的土-水特征曲线[J]. , 2011, 32(4): 973 -0978 .
[7] 鲁 涛,王孔伟,李建林. 库水压力作用下砂岩破坏形式的探究[J]. , 2011, 32(S1): 413 -0418 .
[8] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .
[9] 褚福永 ,朱俊高 ,贾 华 ,安淑红. 粗粒土卸载-再加载力学特性试验研究[J]. , 2012, 33(4): 1061 -1066 .
[10] 卢 强,王占江,李 进,郭志昀,门朝举. 球面波加载下黄土线黏弹性本构关系[J]. , 2012, 33(11): 3292 -3298 .