›› 2015, Vol. 36 ›› Issue (2): 502-508.doi: 10.16285/j.rsm.2015.02.028

• Geotechnical Engineering • Previous Articles     Next Articles

Stress of large cylindrical caisson structure and its adjacent settlement

DENG You-sheng1, WAN Chang-zhong1, YAN Wei-ling1, SHI Yi-bo2, XIAO Ben-lin1, ZHAO Ming-hua3   

  1. 1. School of Civil Engineering & Architecture, Hubei University of Technology, Wuhan, Hubei 430068, China; 2. The 6th Engineering Co., Ltd., MBEC, Wuhan, Hubei 430100, China; 3. Institute of Geotechnical Engineering, Hunan University, Changsha, Hunan 410082, China
  • Received:2013-10-14 Online:2015-02-11 Published:2018-06-13

Abstract: Given the structural features and engineering geological conditions of north anchorage large cylindrical caisson of Wuhan Parrot Cay Yangtze River bridges, combining with in-situ monitored data of some key points, three dimensional calculation modes of FEM are established with software ADINA to analyze stress and deformation of caisson structures and its adjacent diaphragm wall. The stress distribution and deformation of the structures are studied during the caisson sinking and its bottom sealing. The effects of caisson sinking on adjacent high-rise buildings and bank structures are also analyzed comparatively. The research results show that: the principal stress of diaphragm wall increases with the increasing of sinking depth, and its deformation appears mainly in its top and bottom after the caisson bottom sealing, the tension stress would be higher at its structure cutting edge, the middle of cross wall, the joints of cross wall and inner face of caisson well. The corresponding settlement of adjacent soil around the caisson increases with the increasing of sinking length as well. Settlements of monitored points from calculation agree well with measured data after bottom sealing, and the former is generally less than the latter. The differences between them are from -1.22 mm to -0.88 mm at the key points of adjacent high-rise buildings, and those at the key points near the Yangtze River bank are from -1.27 mm to 0.64 mm. The calculation model will provide a guide for settlement control during the caisson sinking.

Key words: anchorage caisson, diaphragm wall, finite element, stress, settlement, monitoring

CLC Number: 

  • TU 753.64
[1] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[2] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[3] HUANG Yu-hua, XU Lin-rong, ZHOU Jun-jie, CAI Yu, . Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method [J]. Rock and Soil Mechanics, 2020, 41(2): 667-675.
[4] SUN Rui, YANG Feng, YANG Jun-sheng, ZHAO Yi-ding, ZHENG Xiang-cou, LUO Jing-jing, YAO Jie, . Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element [J]. Rock and Soil Mechanics, 2020, 41(2): 687-694.
[5] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[6] CHEN Wei-zhong, LI Fan-fan, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388.
[7] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[8] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[9] LIU Cheng-yu, CHEN Bo-wen, LUO Hong-lin, RUAN Jia-chun, . Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition [J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[10] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[11] WANG Long, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Compression model for cohesionless soils and its verification [J]. Rock and Soil Mechanics, 2020, 41(1): 229-234.
[12] AI Xi, LENG Wu-ming, XU Fang, ZHANG Qi-shu, ZHAI Bin, . Graphic method for computing horizontal additional stress in a new prestressed subgrade [J]. Rock and Soil Mechanics, 2020, 41(1): 253-266.
[13] LIU Quan-sheng, LUO Ci-you, ZHU Yuan-guang, JIANG Jing-dong, LIU He, PENG Xing-xin, PAN Yu-cong, . Research on orientation layout of pressure sensing units by rheological stress recovery method [J]. Rock and Soil Mechanics, 2020, 41(1): 336-341.
[14] YIN Guang-zhi, LU Jun, ZHANG Dong-ming, LI Ming-hui, DENG Bo-zhi, LIU Chao, . Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 1-10.
[15] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .