Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (11): 3531-3539.doi: 10.16285/j.rsm.2020.0232

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone

JIN Ai-bing1, 2, WANG Shu-liang1, 2, WEI Yu-dong1, 2, SUN Hao1, 2, WEI Li-chang1, 2   

  1. 1. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-03-05 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51674015) and the Fundamental Research Funds for the Central Universities(FRF-TP-19-026A1).

Abstract: Rock engineering may be subjected to high temperature environment. Different cooling methods of high-temperature rock often lead to significant changes in the physical and mechanical properties of the rock, which will have an important impact on the stability and permeability of rock engineering. Magnetic resonance imaging (MRI), scanning electron microscope (SEM) and uniaxial compression test were used to study the porosity, pore size distribution, peak strength, peak strain, stress-strain relationship and microstructure changes of five temperatures for sandstone samples at 100, 300, 500, 600 and 800℃ under two cooling methods (natural cooling and water cooling). The test results show that: (1) When the rock samples used the natural cooling method, the strength of high-temperature sandstone does not decrease continuously with the increasing of temperature. However, rock samples using water cooling method show continuous decrease of sandstone strength, and the decreasing extent is far greater than that of natural cooling; (2) 500℃ can be considered as the critical value of the influence of different cooling methods on the porosity of sandstone. When the temperature is above 500℃, the water cooling method will cause the rock porosity increase rapidly, and the proportion of pores with large pore diameter (Ф>10 μm) is also higher than that of the natural cooling method. In this consideration, in the field of high-temperature sandstone engineering, the possible seepage hazards should be fully considered when water cooling is used (i.e., fire extinguishing with water after a tunnel is on fire); (3) The SEM test results shows that when the temperature is above 500℃, water cooling promotes the widening and expansion of cracks. When the temperature reaches to 800℃, the pore size of water-cooled sandstone becomes larger, and the fracture is largely developed and connects into a network. This will lead to a substantial increase in water permeability. At the same time, it is one of the reasons for the sharp decrease in rock strength that caused by water cooling at this temperature.

Key words: sandstone, heat treatment, cooling conditions, pore, MRI, SEM

CLC Number: 

  • TU 521
[1] SUN Wen-jin, JIN Ai-bing, WANG Shu-liang, ZHAO Yi-qing, WEI Li-chang, JIA Yu-chun, . Study on sandstone split mechanical properties under high temperature based on the DIC technology [J]. Rock and Soil Mechanics, 2021, 42(2): 511-518.
[2] ZHAN Liang-tong, SUN Qian-qian, GUO Xiao-gang, CHEN Rui, CHEN Yun-min, . Estimation of undrained shear strength of completely decomposed granite waste during rapid landfilling [J]. Rock and Soil Mechanics, 2021, 42(1): 50-58.
[3] ZHANG Ke, LI Na, CHEN Yu-long, LIU Wen-lian, . Evolution characteristics of strain field and infrared radiation temperature field during deformation and rupture process of fractured sandstone [J]. Rock and Soil Mechanics, 2020, 41(S1): 95-105.
[4] QIN Ai-fang, HU Hong-liang. Swelling characteristics of Gaomiaozi Ca-bentonite saturated in alkaline solution and prediction [J]. Rock and Soil Mechanics, 2020, 41(S1): 123-131.
[5] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong. Effect of pore water pressure on shear creep characteristics of serrate structural plane [J]. Rock and Soil Mechanics, 2020, 41(9): 2901-2912.
[6] FANG Ying-guang, CHEN Jian, GU Ren-guo, BA Ling-zhen, SHU Hao-kai, . Applicability of clay permeability based on modified Kozeny-Carman equation by effective specific surface area [J]. Rock and Soil Mechanics, 2020, 41(8): 2547-2554.
[7] HU An-feng, ZHOU Yu-shan, CHEN Yuan, XIA Chang-qing, XIE Kang-he, . Semi-analytical solutions for one-dimensional nonlinear large strain consolidation of structured soft clay [J]. Rock and Soil Mechanics, 2020, 41(8): 2583-2591.
[8] WEI Yao, YANG Geng-she, SHEN Yan-jun, MING Feng, LIANG Bo, . Creep test and constitutive model of cretaceous saturated frozen sandstone [J]. Rock and Soil Mechanics, 2020, 41(8): 2636-2646.
[9] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[10] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[11] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[12] SUN De-an, XUE Yao, WANG Lei, . Analysis of one-dimensional thermal consolidation of saturated soil considering heat conduction of semi-permeable drainage boundary under varying loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1465-1473.
[13] ZHANG Sheng, GAO Feng, CHEN Qi-lei, SHENG Dai-chao, . Experimental study of fine particles migration mechanism of sand-silt mixtures under train load [J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598.
[14] HAN Chao, PANG De-peng, LI De-jian. Analysis of energy evolution during the step loading and unloading creep experiments of sandstone [J]. Rock and Soil Mechanics, 2020, 41(4): 1179-1188.
[15] NIU Geng, SHAO Long-tan, SUN De-an, WEI Chang-fu, GUO Xiao-xia, XU Hua. Evolution law of pore-size distribution in soil-water retention test [J]. Rock and Soil Mechanics, 2020, 41(4): 1195-1202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Ling-fa, CHEN Shan-xiong, YU Zhong-jiu. Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J]. , 2009, 30(10): 3063 -3070 .
[2] WANG Gang, JIANG Yu-jing, WANG Wei-ming, LI Ting-chun. Development and application of an improved numeric control shear-fluild coupled apparatus for rock joint[J]. , 2009, 30(10): 3200 -3209 .
[3] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[4] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[5] XIONG Tian-fang,SHAO Sheng-jun,WANG Tian-ming,GAO Zhi-hong. Research on physical model experiment of Xi’an metro tunnel orthogonally crossing ground fissure[J]. , 2010, 31(1): 179 -186 .
[6] XU Man-qing, JIAN La-hua, LI Jian-hua, XU Bin, LU Jian-fei. Dynamic responses of a layered saturated soil subjected to harmonic horizontal loads[J]. , 2009, 30(9): 2633 -2642 .
[7] WANG Ying-he, WANG Bao-tian, AN Yan-yong. Study of random field characteristics of soil parameters based on CPT measurements[J]. , 2009, 30(9): 2753 -2758 .
[8] ZHANG Hong-fei, CHENG Xiao-jun, GAO Pan, Zhou Xin-xin. Research on forward simulation of tunnel lining cavity GPR images[J]. , 2009, 30(9): 2810 -2814 .
[9] ZHAI Wei, SONG Er-xiang. 3D FEM in moving coordinate for transient response under moving loads[J]. , 2009, 30(9): 2830 -2836 .
[10] XU Chao, HUANG Liang, XING Hao-feng. Influence of cement-bentonite slurry mixing ratio on permeability of cutoff wall[J]. , 2010, 31(2): 422 -426 .