Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (11): 3185-3197.doi: 10.16285/j.rsm.2022.0171

• Numerical Analysis • Previous Articles     Next Articles

Transient dynamic response of cylindrical lined cavity in unsaturated soil

WANG Ying1, 2, WANG Hai-ping1, 2, GAO Meng1, 2   

  1. 1. Shandong Province Key Laboratory of Civil Engineering & Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. College of Civil Engineering and Architecture, Shanghai University of Science and Technology, Qingdao, Shandong 266590, China
  • Received:2022-02-17 Revised:2022-07-13 Online:2022-11-11 Published:2022-12-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51808324).

Abstract: Most soils in nature are unsaturated media, however, most of the soil was assumed to be elastic or saturated media in the previous studies on the transient dynamic response of circular lined tunnels. In this paper, considering the dynamic interaction between the soil and the tunnel lining and the additional mass density caused by dynamic load, the transient dynamic response of a deeply buried cylindrical lined tunnel with infinite length in saturated soil is studied. Based on the porous medium mixture theory and continuum mechanics theory, the controlling equations of the tunnel lining and unsaturated soil are derived when the cylindrical lined tunnel is subjected to transient load. The dynamic response of lining and unsaturated soil in time domain is obtained by using Durbin numerical inversion method. The effects of different saturation degrees on radial displacement, radial stress, hoop stress and pore water stress under transient load are presented and discussed. The results show that (a) the saturation degree has a significant influence on the transient dynamic response of lining and unsaturated soil; (b) the saturation degree has a less influence on the radial attenuation of radial displacement, but has greater influence on the radial attenuation of hoop stress and pore pressure.

Key words: unsaturated soil, cylindrical lined cavity, dynamic response, Laplace transform, saturation degree

CLC Number: 

  • U 451
[1] SHU Jin-hui, MA Qiang, CHANG Li-jun, . Isolation effect of S-wave by composite multilayer wave impeding block in unsaturated soil [J]. Rock and Soil Mechanics, 2023, 44(1): 217-231.
[2] CHEN Yong, SU Jian, CAO Ling, WANG li, WANG Shi-mei, . Evolution law of the soil-water characteristic curve based on data mining method [J]. Rock and Soil Mechanics, 2022, 43(S2): 23-34.
[3] QIN Ai-fang, MENG Hong-ping, JIANG Liang-hua. Analysis of axisymmetric consolidation characteristics of unsaturated soils under surcharge loading and electro-osmosis [J]. Rock and Soil Mechanics, 2022, 43(S1): 97-106.
[4] ZENG Li-feng, SHAO Long-tan, GUO Xiao-xia, . Origin and development of the concept of effective stress for soils [J]. Rock and Soil Mechanics, 2022, 43(S1): 127-144.
[5] WANG Lei, ZHANG Li-ting, SHEN Si-dong, XU Yong-fu, XIA Xiao-he, . Axisymmetric consolidation characteristics for unsaturated soils under piece-wise cyclic load [J]. Rock and Soil Mechanics, 2022, 43(S1): 203-212.
[6] ZHAI Zhang-hui, ZHANG Ya-guo, LI Tong-lu, XIAO Shu-xiong, . Solution for cylindrical cavity expansion in unsaturated soils considering boundary effect [J]. Rock and Soil Mechanics, 2022, 43(S1): 301-311.
[7] JIGN Li-ping, WU Fan, LI Jia-rui, WANG Gang, QI Wen-hao, ZHOU Zhong-yi, . Experimental study of seismic response of soil-pile foundation-isolation support-nuclear island [J]. Rock and Soil Mechanics, 2022, 43(9): 2483-2492.
[8] WANG Zhi-chao, LUO Lei, TIAN Ying-hui, ZHANG Chun-hui, . Experimental study on time-dependent characteristics of rate-sensitivity and creep of unsaturated compacted soil [J]. Rock and Soil Mechanics, 2022, 43(7): 1816-1824.
[9] WANG Hai-man, NI Wan-kui, LIU Kui, . Rapid prediction method of soil-water characteristic curve of Yan’an compacted loess [J]. Rock and Soil Mechanics, 2022, 43(7): 1845-1853.
[10] ZHENG Chang-jie, HE Yu-ze, DING Xuan-ming, LUAN Lu-bao, CHEN Ye-wei, . Vertical vibration response of rigid strip footings on a viscoelastic soil layer overlying bedrock [J]. Rock and Soil Mechanics, 2022, 43(6): 1434-1440.
[11] GAO You, LI Ze, SUN De-an, YU Hai-hao, CHEN Bo, . Unimodal and bimodal soil-water characteristic curves model considering the effect of initial void ratio [J]. Rock and Soil Mechanics, 2022, 43(6): 1441-1452.
[12] FENG Zhong-ju, MENG Ying-ying, ZHANG Cong, LAI De-jin, ZHU Ji-xin, LIN Lu-yu, . Dynamic response and p-y curve of pile groups in liquefaction site under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43(5): 1289-1298.
[13] GUO Ming-zhu, GU Kun-sheng, ZHANG He, SUN Hai-long, WANG Chen, LIU Huang, . Experimental study of dynamic response law of bedding rock slope with weak interlayer under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43(5): 1306-1316.
[14] ZHOU Ze-hua, LÜ Yan, SU Sheng-rui, DIAO Yu-heng, WANG Zuo-peng, WANG Jian-kun, ZHAO Hui, . Seismic response and failure characteristics of granite slope using large-scale shaking table test [J]. Rock and Soil Mechanics, 2022, 43(4): 918-931.
[15] ZHANG Wen-gang, GU Xin, LIU Han-long, ZHANG Qing, WANG Lin, WANG Lu-qi, . Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating [J]. Rock and Soil Mechanics, 2022, 43(4): 1112-1122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[4] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[5] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[6] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[7] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[8] CHEN Zhen, TAO Long-guang, LI Tao, LI Hai-bin, WANG Zong-yong. A new method for settlement computation of box foundation with supporting structure[J]. , 2009, 30(10): 2978 -2984 .
[9] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[10] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .