Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (2): 396-406.doi: 10.16285/j.rsm.2023.0237

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic propagation characteristics of mode I crack in infilled jointed rock masses under impact load

ZHANG Xian-shang1, WEN Guang-cai1, ZHU Zhe-ming2, LONG Qing-ming1, LIU jie3   

  1. 1. State Key Laboratory of Gas Disaster Detecting, Preventing, and Emergency Controlling, China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400037, China; 2. College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China; 3. School of Civil Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2023-02-27 Accepted:2023-05-22 Online:2024-02-11 Published:2024-02-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52204261, 52274246), the Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0577), the Chongqing Science Foundation for Distinguished Young Scholars (CSTB2022NSCQ-JQX0014) and the Natural Science Foundation of Sichuan Province(2022NSFSC1915).

Abstract: To study the dynamic propagation characteristics of mode I crack in infilled jointed rock masses under impact load, dynamic impact compression tests were implemented by a split Hopkinson pressure bar (SHPB) system and a crack propagation measurement device. The single cleavage triangle (SCT) specimens with the joints filled by gypsum, cement, and marble glue were adopted. The dynamic propagation processes and impact failure modes of the crack were analyzed, and the evolution laws of stress intensity factor and energy release rate during the dynamic propagation of mode I crack were studied by the experimental-numerical method. The results show that there are three main failure modes of the infilled jointed rock masses: the prefabricated crack extends and penetrates the whole specimen, the infilled joint fails after the crack penetration, and the infilled joint fails first and then blocks the crack penetration. The failure of the filling body in the joint is related to the strength and cementation force of the filling body, as well as the strain rate of the dynamic load. The crack propagation speed has an oscillatory growth from the crack initiation point and reaches the maximum at a certain position before the crack penetrates the infilled joint, while the stress intensity factor and energy release rate reach the maximum near the joint. The stiffness degradation of the infilled joint inhibits the crack propagation and causes a sharp increase in the energy release rate. The difference in lithological combinations aggravates the material property mismatch of the rock mass specimens, resulting in different decreases of stress intensity factor and energy release rate as the crack passes through the joint.

Key words: impact load, infilled joint, mode I crack, stress intensity factor, crack propagation speed

CLC Number: 

  • TU 452
[1] JIANG Ming-gui, SUN Wei, LI Jin-xin, FAN Kai, LIU Zeng, . Analysis of fracture characteristics and energy consumption of full tailings cemented backfill under impact load [J]. Rock and Soil Mechanics, 2023, 44(S1): 186-196.
[2] LIU Yong-jian, FU Yang-pan, LAI Ming-yang, LI Zhang-ming, FANG Hao-yuan, XIE Zhi-kun. Dynamic response and effect of loading rate of soil under impact loading [J]. Rock and Soil Mechanics, 2023, 44(9): 2485-2494.
[3] WANG Lei, ZHANG Shuai, LIU Huai-qian, CHEN Li-peng, ZHU Chuan-qi, LI Shao-bo, WANG An-cheng. Research on energy dissipation and damage failure law of gas-bearing coal under impact loading [J]. Rock and Soil Mechanics, 2023, 44(7): 1901-1915.
[4] WANG Xue-song, GUO Lian-jun, LIU Xin, DENG Ding, ZHANG Jiu-yang, XU Zhen-yang, . The mode I crack morphology and section roughness of granite under impact [J]. Rock and Soil Mechanics, 2023, 44(7): 1925-1936.
[5] RAN Long-zhou, YUAN Song, WANG Xi-bao, WANG Zheng-zheng, ZHANG Sheng, . A method for calculating rockfall impact load on shed tunnel [J]. Rock and Soil Mechanics, 2023, 44(6): 1748-1760.
[6] YUE Hao, YANG Sheng-li, ZHAI Rui-hao, ZHANG Shen, CUI Xuan. Study of the mechanical properties of sand-bearing rocks and their disaster-causing mechanisms [J]. Rock and Soil Mechanics, 2023, 44(4): 1230-1244.
[7] HOU Yong-qiang, YIN Sheng-hua, YANG Shi-xing, ZHANG Min-zhe, LIU Hong-bin, . Mechanical response and energy damage evolution process of cemented backfill under impact loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 145-156.
[8] WANG Ben-xin, JIN Ai-bing, SUN Hao, WANG Shu-liang, . Study on fracture mechanism of specimens with 3D printed rough cross joints at different angles based on DIC [J]. Rock and Soil Mechanics, 2021, 42(2): 439-450.
[9] LIU Jian, QIAO Lan, LI Qing-wen, LI Yuan, ZHAO Guo-yan, . Analytical study of fracture parameters for a centrally cracked Brazilian disc subjected to distributed diametral pressures [J]. Rock and Soil Mechanics, 2021, 42(11): 2987-2996.
[10] LIU Xin-yu, ZHANG Xian-wei, YUE Hao-zhen, KONG Ling-wei, XU Chao, . SHPB tests on dynamic impact behavior of granite residual soil [J]. Rock and Soil Mechanics, 2020, 41(6): 2001-2008.
[11] XU Dong-sheng, HUANG Ming, HUANG Fo-guang, CHEN Cheng. Failure behavior of cemented coral sand with different gradations [J]. Rock and Soil Mechanics, 2020, 41(5): 1531-1539.
[12] ZHOU En-quan, ZONG Zhi-xin, WANG Qiong, LU Jian-fei, ZUO Xi. Dynamic characteristics of pipe buried in rubber-silt lightweight mixtures [J]. Rock and Soil Mechanics, 2020, 41(4): 1388-1395.
[13] NIE Zhi-bao, ZHENG Hong, WAN Tao, LIN Shan. The numerical manifold method for boundary integrals in elastostatics [J]. Rock and Soil Mechanics, 2020, 41(4): 1429-1436.
[14] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
[15] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .