›› 2006, Vol. 27 ›› Issue (3): 441-444.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of parameters of modified Cambridge model on computed results

ZHANG Yun   

  1. Department of Earth Sciences, Nanjing University, Nanjing 210093, China
  • Received:2004-08-24 Online:2006-03-10 Published:2013-11-06

Abstract: Modified Cambridge model has been widely applied to geotechnical engineering; and it is important to decide the values of parameters in this model. One of the efficient ways to obtain these values is the back analysis based on the measured displacement. The finite element method is used to calculate the horizontal displacement at the front of the pier improved with drilled grouting piles. The changes of the displacement at that point with each parameter are analyzed. The results show that the four primary parameters are the dimensionless parameter related to elastic modulus, the exponent related to elastic modulus, Poisson’s ratio and the test constant of the virgin curve of isotropic loading, which have great effects on the displacement. This result may provide the basis for choosing the parameters for back analysis

Key words: modified Cambridge model, parameters analysis, displacement

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[2] ZHANG Kui, ZHAO Cheng-gang, LI Wei-hua. Study of the seismic response of the seafloor ground containing soft soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2456-2468.
[3] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[4] XU Peng , JIANG Guan-lu , WANG Xun, HUANG Hao-wei , HUANG Zhe, WANG Zhi-meng, . Centrifuge model tests on influence of facing on reinforced soil retaining walls [J]. Rock and Soil Mechanics, 2019, 40(4): 1427-1432.
[5] LU Hua-xi, XU Lu-yao, LIANG Ping-ying, WU Bi-tao. Influence of hill on railway environmental vibration [J]. Rock and Soil Mechanics, 2019, 40(4): 1561-1568.
[6] ZHANG Jing-ke, SHAN Ting-ting, WANG Yu-chao, WANG Nan, FAN Meng, ZHAO Lin-yi, . Mechanical properties of soil-grout interface of anchor system in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(3): 903-912.
[7] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[8] TANG De-qi, YU Feng, CHEN Yi-tian, LIU Nian-wu, . Model excavation tests on double layered retaining structure composed of existing and supplementary soldier piles [J]. Rock and Soil Mechanics, 2019, 40(3): 1039-1048.
[9] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[10] LIU Yang-hui, HU Xiang-dong, . Mechanical analysis of frozen soil wall of vertical mine in unloading state [J]. Rock and Soil Mechanics, 2018, 39(S2): 344-350.
[11] CHEN Jun, LIANG Wen-peng, YING Hong-wei, . Experimental and numerical research on proper interval of large diameter soil-cement anchor cables [J]. Rock and Soil Mechanics, 2018, 39(S2): 374-380.
[12] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
[13] SUN Ming-she, MA Tao, SHEN Zhi-jun, WU Xu, WANG Meng-shu,. Study of lining sharing surrounding rock pressure in composite lining structure [J]. , 2018, 39(S1): 437-445.
[14] LIU Cheng-yu, ZHANG Zhi-xiang,. Improved calculation method of foundation pit enclosure structure based on p-y curve [J]. , 2018, 39(S1): 446-452.
[15] WANG Shao-jie, LU Ai-zhong, ZHANG Xiao-li. Analytical method of displacement back analysis for horseshoe tunnel excavated in transverse isotropic rock mass [J]. , 2018, 39(S1): 495-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] . Numerical implementation of discontinuities in dual media 3D model for thermo-hydro-mechanical coupling[J]. , 2010, 31(2): 638 -644 .
[4] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[5] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[6] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[7] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[8] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[9] XIA Yuan-you, YE Hong, LIU Xiao-he, CHEN Jie. Analysis of shear stress along pressure-type anchorage cable in weathered rock mass[J]. , 2010, 31(12): 3861 -3866 .
[10] HU Qi, LING Dao-sheng, CHEN Yun-min. Analytical method and engineering application of horizontal coefficients of subgrade reaction based on Melan’s solution[J]. , 2009, 30(1): 33 -39 .