›› 2011, Vol. 32 ›› Issue (7): 2133-2138.

• Geotechnical Engineering • Previous Articles     Next Articles

Influence of nonuniform skin effect on steady radial flow in anisotropic confined aquifer

WANG Yu-lin1, 2,XIE Kang-he1,WANG Kun1,LI Chuan-xun1,HUANG Da-zhong 1   

  1. 1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310027, China; 2. Department of Environmental and Construction Engineering, Wuyi University, Wuyishan, Fujian 354300, China
  • Received:2010-11-22 Online:2011-07-10 Published:2011-06-30

Abstract: With consideration of nonuniform skin effect factor, the mathematical model for 3D radial flow for anisotropic confined aquifer is presented. To attain solution for the corresponding problem, the skin effect factor is deemed as piecewise continuous functions, according to which the confined aquifer is divided into N layers. Then the method of finite difference is used to transfer the original problem into matrix differential equation with boundary conditions; and finally, by matrix theory, the solution is attained. With mathematical software, the solution is applied to numerical examples. Results show that: In the region close to vertical well, the variation of drawdown and flux component is inversely related to the skin effect factor; that is, larger skin effect factor leads to smaller drawdown and flux, vice versa, while in the region far from vertical well, the same tendency of variation keeps only for the situation that vertical permeability is far smaller than radial permeability. Therefore, the amplitude value of the curves s*- r* for different layers of confined aquifer depends on both the value of skin effect factor and the ratio of vertical permeability to radial permeability.

Key words: skin effect factor, mathematical model, matrix differential equation, finite difference method, confined aquifer

CLC Number: 

  • TV 12
[1] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[2] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[3] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
[4] CAO Hong, HU Yao, LUO Guan-yong. Research on approximate calculation method for incomplete wells with filter screen ends away from the confined aquifer level [J]. Rock and Soil Mechanics, 2019, 40(7): 2774-2780.
[5] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[6] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[7] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[8] WU Gang, SUN Hong-yue, FU Cui-wei, CHEN Yong-zhen, TANG Bi-hui,. A mathematical model and its solution for unsteady flow under siphon drainage by fully penetrating well in soft ground [J]. , 2018, 39(9): 3355-3361.
[9] LI Chuan-xun, DONG Xing-quan, JIN Dan-dan, WANG Yu-lin,. Large-strain nonlinear consolidation of double-layered soft clay with threshold gradient [J]. , 2018, 39(5): 1877-1884.
[10] LI Chuan-xun , DONG Xing-quan , JIN Dan-dan , XIE Kang-he,. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient [J]. , 2017, 38(2): 377-384.
[11] JIA Ya-jie, LIANG Fa-yun, CUI Zhen-dong, YE Hua,. Analysis of soil deformation caused by decompression of confined water based on displacement coordination condition [J]. , 2016, 37(S1): 42-48.
[12] XIE Xin-yu, HAN Dong-dong, HUANG Li , WANG Zhong-jin, LIU Kai-fu,. Calculation of ultimate bearing capacity factor Nγ for rough strip footings [J]. , 2016, 37(S1): 209-214.
[13] DONG Xing-quan, LI Chuan-xun, CHEN Meng-meng, ZHANG Jun, XIE Kang-he,. Analysis of large-strain nonlinear consolidation of double-layer soft clay foundation with considering effect of non-Darcy’s flow [J]. , 2016, 37(8): 2321-2331.
[14] XU Ling-yu, CAI Fei, CHEN Guo-xing, WANG Guo-xin,. Implementation of nonlinear dynamic constitutive model in FLAC3D with considering cyclic softening behaviors of soils [J]. , 2016, 37(11): 3329-3335.
[15] GONG Xiao-nan , SUN Zhong-ju , YU Jian-lin , . Analysis of displacement of adjacent buried pipeline caused by ground surcharge [J]. , 2015, 36(2): 305-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[4] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[5] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[6] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[7] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[8] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[9] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[10] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .