›› 2012, Vol. 33 ›› Issue (10): 3151-3155.

• Numerical Analysis • Previous Articles     Next Articles

Investigations of water transport in valley-type MSW landfills and their stabilities subjected to various rainfall patterns

QIU Zhan-hong,HE Chun-mu,ZHU Bing-jian,CHEN He-long   

  1. College of Civil and Architectural Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
  • Received:2012-03-07 Online:2012-10-10 Published:2012-10-19

Abstract: It is shown that the water tables of leachate in many early valley-type MSW landfills in Chinese Southern Region are very high by the operating experiments in last ten years. It is shown that the high water table of leachate by rainwater infiltration is a main factor induced MSW landfill landslide by many literatures. So, it is very important to investigate the water transport responses and the stability of valley-type MSW landfills under heavy rainfall. Firstly, based on the soil-water characteristic curve of shallow, middle and deep layer MSW in Qizhishan landfill and Brooks-Corey equations, the permeability function of MSW landfills is given by nonlinear curve fitting. Secondly, numerical analyses are conducted to investigate water transport in Qizhishan valley-type MSW landfill subjected to rainfalls with four different patterns, i. e. delayed, central, advanced and uniform rainstorms. At last, the stability of Qizhishan landfill has been studied by limit equilibrium method. The computed results show that rainfall pattern has a significant influence on water transport in valley-type landfill and its stability, and the delayed rainfall is found to be the most critical one because it results in the highest pore-water pressure in the landfill and the smallest safety factor of landfill. Numerical results show that the safety factor of landfill reaches 1.016 after 746 mm rainfall with duration of 7 days, and the possibility of landside in Qizhishan landfill is very great.

Key words: Qizhishan landfill, rainfall patterns, rainfall infiltration, saturated-unsaturated seepage, water transport, stability analysis

CLC Number: 

  • TU 443
[1] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[2] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[3] NIE Xiu-peng, PANG Huan-ping, SUN Zhi-bin, XIE Song-mei, HOU Chao-qun. Upper bound analysis of seismic stability of 3D reinforced slopes [J]. Rock and Soil Mechanics, 2019, 40(9): 3483-3492.
[4] CHEN Jian-gong, LI Hui, HE Zi-yong, . Homogeneous soil slope stability analysis based on variational method [J]. Rock and Soil Mechanics, 2019, 40(8): 2931-2937.
[5] ZHAN Liang-tong, HU Ying-tao, LIU Xiao-chuan, CHEN Jie, WANG Han-lin, ZHU Bin, CHEN Yun-min. Centrifuge modelling of rainfall infiltration in an unsaturated loess and joint monitoring of multi-physical parameters [J]. Rock and Soil Mechanics, 2019, 40(7): 2478-2486.
[6] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[7] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, HOU Yan-dong, WANG Bin, GUO Zong-yun , WEI Hao-tian, . Mechanism of climate warming on thermal-moisture dynamics of active permafrost layer considering effect of rainfall [J]. Rock and Soil Mechanics, 2019, 40(5): 1983-1993.
[8] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[9] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[10] ZHANG Long-fei, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, KANG Tian. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide [J]. Rock and Soil Mechanics, 2019, 40(12): 4767-4776.
[11] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[12] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
[13] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
[14] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[15] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, . Coupled water-vapor-heat transport in shallow unsaturated zone of active layer in permafrost regions [J]. , 2018, 39(2): 561-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .