›› 2013, Vol. 34 ›› Issue (3): 833-841.

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of seepage stability of large-scale landslide under rainfall condition

ZHANG Yu1, 2,XU Wei-ya2,ZOU Li-fang2,SUN Huai-kun3   

  1. 1. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, Shandong 266580, China; 2. Geotechnical Research Institute, Hohai University, Nanjing 210098, China; 3. HydroChina Kunming Engineering Corporation, Kunming 650051, China
  • Received:2012-01-17 Online:2013-03-11 Published:2013-03-20

Abstract: The large-scale landslides, widely distributed in southwest mountains and canyons, are prone to produce instability due to rainfall. In Gushui hydropower station,not only is the extremely large volume of Zhenggang large landslide accumulation body up to more than 4 750×104 m3, but also the thicknesses of many ultra-deep landslide are over 50 m. Under the influences of the heavy rainfall in 2008, the landslide started to deform again and even more seriously. According to the results of field engineering geological investigation and analysis of geologic structure characteristics and hydrogeology conditions, the mechanism of rainfall infiltration and stability in the current situation was qualitatively analyzed first. Then the whole landslide was transfixed slipping surface in the state of creep deformation; so it should be treated such as excavating and reinforcing. Combined with the analysis result, quantitative study of the seepage properties of landslide showed the dynamic sliding mechanism that water infiltration caused deformation, evaluated the stability and treatment, thus proposed effective drainage measures before and after the treatment under the rainfall. The results also showed that the saturation line and backwater was formed due to saturated soil by infiltration. Before the treatment, the backwater was seriously persisted in local landslide and slip surface; and the worst stability came out 4 days later after the rain stopped; and the maximum thickness of backwater increased up to 6 m. However, with backwater reduced obviously, the stability was significantly increased by the treatment. The results truly reflected the situations and laws of the stability of landslide, which were consistent with the results of field exploration. The results were significantly improved by the treatment. Drainage measures proposed would keep the landslide’s stability efficiently. The research results will be useful and meaningful in the same projects as reference.

Key words: hydropower station, large-scale landslide accumulation body, rainfall, unsaturation, seepage properties, stability, drainage measure

CLC Number: 

  • TV 698
[1] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[2] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[3] LU Hai-feng, MENG Xiang-shuai, YAN Wei, YAO Duo-xi, . Circular sliding solution of mining stability and failure depth of floor layered structure on coal face [J]. Rock and Soil Mechanics, 2020, 41(1): 166-174.
[4] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[5] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[6] LIU Shun-qing, HUANG Xian-wen, ZHOU Ai-zhao, CAI GUO-jun, JIANG Peng-ming, . A stability analysis method of soil-rock slope based on random block stone model [J]. Rock and Soil Mechanics, 2019, 40(S1): 350-358.
[7] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[8] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[9] NIE Xiu-peng, PANG Huan-ping, SUN Zhi-bin, XIE Song-mei, HOU Chao-qun. Upper bound analysis of seismic stability of 3D reinforced slopes [J]. Rock and Soil Mechanics, 2019, 40(9): 3483-3492.
[10] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[11] HUANG Xiao-hu, LEI De-xin, XIA Jun-bao, YI Wu, ZHANG Peng, . Forecast analysis and application of stepwise deformation of landslide induced by rainfall [J]. Rock and Soil Mechanics, 2019, 40(9): 3585-3592.
[12] ZHU Cai-hui, CUI Chen, LAN Kai-jiang, DONG Yong-qiang. The effects of the degradation of brick-clay structure and demolition of embedded buildings on the stability of Yulin City Wall [J]. Rock and Soil Mechanics, 2019, 40(8): 3153-3166.
[13] CHEN Chong, WANG Wei, LÜ Hua-yong, . Stability analysis of slope reinforced with composite anti-slide pile model [J]. Rock and Soil Mechanics, 2019, 40(8): 3207-3217.
[14] CHEN Jian-gong, LI Hui, HE Zi-yong, . Homogeneous soil slope stability analysis based on variational method [J]. Rock and Soil Mechanics, 2019, 40(8): 2931-2937.
[15] ZHAN Liang-tong, HU Ying-tao, LIU Xiao-chuan, CHEN Jie, WANG Han-lin, ZHU Bin, CHEN Yun-min. Centrifuge modelling of rainfall infiltration in an unsaturated loess and joint monitoring of multi-physical parameters [J]. Rock and Soil Mechanics, 2019, 40(7): 2478-2486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[2] CHEN Hong-jiang, LI Xi-bing, LIU Ai-hua. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory[J]. , 2009, 30(12): 3655 -3659 .
[3] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[4] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[5] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[6] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[7] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[8] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[9] XU Yang, GAO Qian, LI Xin, LI Jun-hua, JIA Yun-xi. In-situ experimental study of permeability of rock and soil aggregates[J]. , 2009, 30(3): 855 -858 .
[10] HU Zai-qiang, LI Hong-ru, SU Yong-jiang. 3-D static stress and displacement analysis of Gangqu river concrete faced rockfill dam[J]. , 2009, 30(S2): 312 -0317 .