›› 2013, Vol. 34 ›› Issue (7): 1832-1838.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Modifications to Coulomb’s theory of earth pressure

CHEN Wen-sheng,LI Miao-miao,ZHANG Yong-jie,CAI Xiao-lin   

  1. School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China
  • Received:2012-12-18 Online:2013-07-10 Published:2013-07-15

Abstract: Coulomb’s theory of earth pressure is still playing an important role in calculating soil earth pressure and is well known all the world. By analyzing the mechanical characteristics of the limiting equilibrium soil wedge behind the retaining wall, especially the force between the soil wedge and retaining wall, some modifications to traditional Coulomb’s theory of earth pressure are presented. Considering that it is not necessary for the force (which is defined as earth pressure) between the wedge and the retaining wall surface to be on the point of sliding or to be in a condition of limiting equilibrium; the direction of the earth pressure can not be determined, but it must be limited in an allowed range according to the friction angle. Therefore, the active earth pressure is defined as the maximum value of the force within the allowed range; and the passive earth pressure is the minimum value of the force within the corresponding allowed range. This paper also considers that the soil wedge and the retaining wall are two different objects; and the soil wedge is formed only because of the potential failure surface of the soil itself. In other words, it is not necessary for the force between the wedge and the wall surface to achieve a critical state. As a matter of fact, the force between the wall surface and the soil wedge is equivalent to the force exerted on an object (soil wedge) by another object (retaining wall); and even if the soil wedge slides along a failure surface, the two objects do not need to slide each other along their contact surface. The formulas of the modified active earth pressure are derived and an approximate solution is presented for the passive earth pressure calculation. Examples prove that the results of this study are significantly different from the classic Coulomb’s theory. The works of modifying Coulomb’s theory of earth pressure deserve much more attention.

Key words: Coulomb’s theory of earth pressure, modifications, retaining wall, limiting equilibrium, soil wedge

CLC Number: 

  • TU 432
[1] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[2] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[3] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[4] XU Peng , JIANG Guan-lu , WANG Xun, HUANG Hao-wei , HUANG Zhe, WANG Zhi-meng, . Centrifuge model tests on influence of facing on reinforced soil retaining walls [J]. Rock and Soil Mechanics, 2019, 40(4): 1427-1432.
[5] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[6] WANG Jia-quan, ZHANG Liang-liang, LAI Yi, LU Meng-liang, YE Bin, . Large-scale model tests on static and dynamic mechanical characteristics of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2019, 40(2): 497-505.
[7] WANG Jia-quan, XU Liang-jie, HUANG Shi-bin, LIU Zheng-quan. Bearing capacity analysis of geogrid reinforced abutment retaining wall under dynamic load [J]. Rock and Soil Mechanics, 2019, 40(11): 4220-4228.
[8] ZHANG Xiao-xi, HE Si-ming, FAN Xiao-yi, . Seismic stability of L-shape retaining walls and determination method of sliding surface [J]. Rock and Soil Mechanics, 2019, 40(10): 4011-4020.
[9] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[10] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[11] LI Zhao-hua, HU Jie, FENG Ji-li, GONG Wen-jun. Numerical simulation of debris flow based on visco-elastoplastic constitutive model [J]. , 2018, 39(S1): 513-520.
[12] YANG Shan-qi, LU Kun-lin, SHI Ke-bao, ZHAO Han-tian, CHEN Yi-ming,. Model tests on 3D slip surface of passive failure behind a rigid retaining wall [J]. , 2018, 39(9): 3303-3312.
[13] XU Peng, JIANG Guan-lu, QIU Jun-jie, LIN Zhan-zhan, WANG Zhi-meng,. Limit analysis on yield acceleration and failure model of reinforced soil retaining walls using two-wedge method [J]. , 2018, 39(8): 2765-2770.
[14] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
[15] LI Li-hua, SHI An-ning, XIAO Heng-lin, HU Zhi, YANG Jun-chao, YU Chang-dao. Model test and mechanical properties study of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2018, 39(12): 4360-4368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QI Le,SHI Jian-yong,CAO Quan. Method for calculating rational thickness of cushion in rigid pile composite ground[J]. , 2009, 30(11): 3423 -3428 .
[2] YU Jun, TONG Li-yuan, LIU Song-yu, TANG Jin-song. Simulation and analysis of controlling water in tunnel based on preferred plane theory[J]. , 2009, 30(12): 3825 -3830 .
[3] YANG Hui, CAO Ping, JIANG Xue-liang. Micromechanical model for equivalent crack propagation under chemical corrosion of water-rock interaction[J]. , 2010, 31(7): 2104 -2110 .
[4] LIU Qi,LU Yao-ru,ZHANG Feng-e,XIONG Kang-ning. Study of simulation experiment for carbonate rocks dissolution under hydrodynamic pressure[J]. , 2010, 31(S1): 96 -101 .
[5] ZHANG Peng, CHEN Jian-ping, QIU Dao-hong. Evaluation of tunnel surrounding rock quality with extenics based on rough set[J]. , 2009, 30(1): 246 -250 .
[6] LI Xiang,JIA Ming-tao,WANG Li-guan,BAI Yun-fei. Study of orefragment size prediction in block caving based on Monte Carlo stochastic simulation[J]. , 2009, 30(4): 1186 -1190 .
[7] YIN Sheng-bin, DING Hong-yan. Time series-projection pursuit regression model for predicting surface settlement during pit excavation[J]. , 2011, 32(2): 369 -374 .
[8] HUO min, CHEN Jian-bing, ZHANG jin-zhao. Foundation clearing test study of highway subgrade in patchy permafrost regions of Northeast China[J]. , 2009, 30(S2): 263 -268 .
[9] XU Wen-Jie. Study of spatial effect and stability of large scale soil-rock mixture landslide[J]. , 2009, 30(S2): 328 -333 .
[10] CAO Jia-wen ,PENG Zhen-bin ,PENG Wen-xiang ,HE Zhong-ming ,YIN Quan. Model test study of inflated anchors in sands[J]. , 2011, 32(7): 1957 -1962 .