›› 2013, Vol. 34 ›› Issue (S1): 167-172.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Calculation of active earth pressure for cohesive soil under action of strip surcharge

KE Cai-tong, CHEN Yi-bo, GAO Hong-bo, XIE Hong-bo   

  1. College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China
  • Received:2012-11-26 Online:2013-08-30 Published:2014-06-09

Abstract: Based on the Coulomb's earth pressure theory hypothesis that active earth pressure against the back of retaining wall is due to thrust force exerted by a sliding wedge of soil between the back of the wall and a plane which passes through the bottom edge of the wall and has an inclination of θ, a formula of active earth pressure is proposed, which considers the cohesion force on the sliding plane, the adhesive force between soil and the retaining wall, tension crack appears on the surface of cohesive soil, the strip surcharge; and the explicit solutions of critical rupture angle are given. When continuous uniform load acts on the back of the wall or without considering the situation that tension crack appears on the surface of cohesive soil, it can be solved by the same method with zeroing the distance from the strip surcharge to the coping and that the calculation of crack depth. Studies have shown that the calculation result of earth pressure based on specification is small, as the influence of strip surcharge on critical angle of rupture doesn’t count. The formula has a wide range of application, especially for the case that the strip surcharge acts on arbitrary position behind the wall. It has a certain practical value for the design and calculation of retaining wall in practical projects.

Key words: retaining wall, active earth pressure, cohesive soil, adhesive force, strip surcharge

CLC Number: 

  • TU 442
[1] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[2] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[3] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[4] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[5] XU Peng , JIANG Guan-lu , WANG Xun, HUANG Hao-wei , HUANG Zhe, WANG Zhi-meng, . Centrifuge model tests on influence of facing on reinforced soil retaining walls [J]. Rock and Soil Mechanics, 2019, 40(4): 1427-1432.
[6] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[7] WANG Jia-quan, ZHANG Liang-liang, LAI Yi, LU Meng-liang, YE Bin, . Large-scale model tests on static and dynamic mechanical characteristics of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2019, 40(2): 497-505.
[8] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[9] WANG Jia-quan, XU Liang-jie, HUANG Shi-bin, LIU Zheng-quan. Bearing capacity analysis of geogrid reinforced abutment retaining wall under dynamic load [J]. Rock and Soil Mechanics, 2019, 40(11): 4220-4228.
[10] ZHANG Xiao-xi, HE Si-ming, FAN Xiao-yi, . Seismic stability of L-shape retaining walls and determination method of sliding surface [J]. Rock and Soil Mechanics, 2019, 40(10): 4011-4020.
[11] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[12] LI Zhao-hua, HU Jie, FENG Ji-li, GONG Wen-jun. Numerical simulation of debris flow based on visco-elastoplastic constitutive model [J]. , 2018, 39(S1): 513-520.
[13] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[14] YANG Shan-qi, LU Kun-lin, SHI Ke-bao, ZHAO Han-tian, CHEN Yi-ming,. Model tests on 3D slip surface of passive failure behind a rigid retaining wall [J]. , 2018, 39(9): 3303-3312.
[15] XU Peng, JIANG Guan-lu, QIU Jun-jie, LIN Zhan-zhan, WANG Zhi-meng,. Limit analysis on yield acceleration and failure model of reinforced soil retaining walls using two-wedge method [J]. , 2018, 39(8): 2765-2770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Si-ming, WU Yong, LI Xin-po. Research on mechanism of uplift rock-socketed piles[J]. , 2009, 30(2): 333 -337 .
[2] KUANG Yu-chun, WU Kai-song, YANG Ying-xin, MA De-kun. Simulation model of drilling process of three-cone bit[J]. , 2009, 30(S1): 235 -238 .
[3] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[4] YAN Zhi-hua, LIU Zhi-wei, LIU Hou-jian. Treatment and parameter selection of high slope of a power plant located in the terraces of Yellow River[J]. , 2009, 30(S2): 465 -468 .
[5] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[6] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[7] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[8] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .
[9] MENG Zhen, CHEN Jin-jian, WANG Jian-hua, YIN Zhen-yu. Study of model test on bearing capacity of screw piles in sand[J]. , 2012, 33(S1): 141 -145 .
[10] LUO Gang , HU Xie-wen , GU Cheng-zhuang . Study of kinetic failure mechanism and starting velocity of consequent rock slopes under strong earthquake[J]. , 2013, 34(2): 483 -490 .