Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (2): 352-360.doi: 10.16285/j.rsm.2020.0938

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on particle structure and crushing behaviors of coral sand

LÜ Ya-ru1, WANG Chong1, HUANG Hou-xu2, ZUO Dian-jun3   

  1. 1. College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 210098, China; 2. College of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China; 3. Tianjin Research Institute for Water Transport Engineering, Ministry of Transport of the People’s Republic of China, Tianjin 300456, China
  • Received:2020-07-03 Revised:2020-11-10 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51779264), the General Program of Natural Science Foundation of Jiangsu Province (BK20171399), the Fundamental Research Funds for the Central Universities (B200202119), the Natural Science Foundation of Anhui (2008085QE219) and the Basic Scientific Research Service Funds of Central Level Public Welfare Research Institutes (TKS20200403).

Abstract: The physical and mechanical properties of coral sand particles determine the macro mechanical behaviors of coral sand, which is closely related to several geotechnical engineering problems, especially those related to particle breakage. The apparent and internal structure characteristics of coral sand particles were studied by SEM and X-CT tests. It was found that the coral sand particles were porous. The porosity of coral sand particles with biological skeleton components was as high as 41%, while the porosity of coral sand particles formed by weathering and depositing was less than 20%. Most of the pores on the surface of the particles can be connected with the interior so that the gas can flow through the particles. The failure type of coral sand particles was closely related to the porosity. The coral sand particles with low porosity were broken into fragmentations step by step, similar to silica sand particles. The coral sand particles with high porosity were gradually compressed with the failure of skeleton. The failure of the skeleton was accompanied by the formation of fine detritus which did not detach from the skeleton until the particles were compressed into powder. The elastic modulus, yielding strength and crushing strength of circular, branched and flaky coral sand particles were determined by compression tests and statistical analysis. The correlations between particle strength and particle size was clarified, which provided parameter basis for studying the mechanical properties of coral sand. Furthermore, the stress-strain curves of yielding and crushing were exponentially distributed, which laid a foundation for further exploration of particle crushing characteristics in the future.

Key words: coral sand, porosity, particle crushing, crushing strength, stress-strain

CLC Number: 

  • TU 441
[1] DENG Shen-yuan, JIANG Qing-hui, SHANG Kai-wei, JING Xiang-yang, XIONG Feng, . Effect of high temperature on micro-structure and permeability of granite [J]. Rock and Soil Mechanics, 2021, 42(6): 1601-1611.
[2] SHEN Yang, FENG Zhao-yan, DENG Jue, CHEN Kai-jia, XU Jun-hong, . Model test on bearing capacity of coral sand foundation in the South China Sea [J]. Rock and Soil Mechanics, 2021, 42(5): 1281-1290.
[3] YANG Ai-wu, XU Cai-li, LANG Rui-qing, WANG Tao, . Three-dimensional mechanical properties and failure criterion of municipal solidified sludge under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2021, 42(4): 963-975.
[4] LIU Hai-feng, ZHENG Kun, ZHU Chang-qi, MENG Qing-shan, WU Wen-juan. Brittleness evaluation of coral reef limestone base on stress-strain curve [J]. Rock and Soil Mechanics, 2021, 42(3): 673-680.
[5] SUN Zhuang-zhuang, MA Gang, ZHOU Wei, WANG Yi-han, CHEN Yuan, XIAO Hai-bin. Influence of particle shape on size effect of crushing strength of rockfill particles [J]. Rock and Soil Mechanics, 2021, 42(2): 430-438.
[6] YANG Ai-wu, YANG Shao-kun, ZHANG Zhen-dong, . Experimental study of mechanical properties of dredger fill under different unloading rates and stress paths [J]. Rock and Soil Mechanics, 2020, 41(9): 2891-2900.
[7] MENG Min-qiang, WANG Lei, JIANG Xiang, WANG Cheng-gui, LIU Han-long, XIAO Yang, . Single-particle crushing test and numerical simulation of coarse grained soil based on size effect [J]. Rock and Soil Mechanics, 2020, 41(9): 2953-2962.
[8] HE Wen-hai, WANG Tong. Dynamic porosity and related dynamic response characteristic of two-dimensional saturated soil [J]. Rock and Soil Mechanics, 2020, 41(8): 2703-2711.
[9] DENG Wei-ting, DING Xuan-ming, PENG Yu, . A study of vertical bearing capacity of expansive concrete pile in coral sand foundation [J]. Rock and Soil Mechanics, 2020, 41(8): 2814-2820.
[10] LI Li-hua, YU Xiao-ting, XIAO Heng-lin, MA Qiang, LIU Yi-ming, YANG Xing, . Mechanical properties of reinforcement about rice husk ash mixed soil [J]. Rock and Soil Mechanics, 2020, 41(7): 2168-2178.
[11] MAO Jia-hua, YUAN Da-jun, YANG Jiang-xiao, ZHANG Bing, . A theoretical study of porosity characteristics on the excavation face of slurry shield in sand stratum [J]. Rock and Soil Mechanics, 2020, 41(7): 2283-2292.
[12] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[13] LIANG Ke, CHEN Guo-xing, HANG Tian-zhu, LIU Kang, HE Yang, . A new prediction model of small-strain shear modulus of sandy soils [J]. Rock and Soil Mechanics, 2020, 41(6): 1963-1970.
[14] HOU Zhi-qiang, WANG Yu, LIU Dong-qiao, LI Chang-hong, LIU Hao. Experimental study of mechanical properties of marble under triaxial unloading confining pressure after fatigue loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1510-1520.
[15] XU Dong-sheng, HUANG Ming, HUANG Fo-guang, CHEN Cheng. Failure behavior of cemented coral sand with different gradations [J]. Rock and Soil Mechanics, 2020, 41(5): 1531-1539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[3] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[4] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[5] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[6] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .
[7] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[8] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[9] CHEN Song, XU Guang-li, CHEN Guo-jin3 WU Xue-ting. Research on engineering geology characteristics of soil in sliding zone of Huangtupo landslide in Three Gorges Reservoir area[J]. , 2009, 30(10): 3048 -3052 .
[10] ZHANG Jian-guo, ZHANG Qiang-yong, YANG Wen-dong, ZHANG Xin. Regression analysis of initial geostress field in dam zone of Dagangshan hydropower station[J]. , 2009, 30(10): 3071 -3078 .