Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (2): 520-530.doi: 10.16285/j.rsm.2022.0198

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Prototype test and load transfer characteristic analysis of multi-disk anchor rod

HUANG Wei1, JIAN Wen-bin1, 2, YANG Jian1, DOU Hong-qiang1, LUO Jin-mei3   

  1. 1. Department of Geotechnical and Geological Engineering, Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian 350116, China; 2. Key Laboratory of Geohazard Prevention of Fujian Province, Fuzhou University, Fuzhou, Fujian 350003, China; 3. Fujian Geological Exploration Institute of Geology and Mine Bureau, Fuzhou, Fujian 350013, China
  • Received:2022-02-22 Accepted:2022-05-06 Online:2023-02-10 Published:2023-02-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41861134011) and the Science and Technology Innovation Team Fund Project of China Chemical Geology and Mine Bureau(201806291).

Abstract: Multi-disk anchor rod is a newly developed anchoring structure, which has excellent engineering characteristics compared with ordinary anchor rod. On the basis of the laboratory model test research of the multi-disk anchor, a theoretical calculation formula for the ultimate bearing capacity of the multi-disk anchor is deduced through the limit equilibrium theory. It’s validity is verified by the correspondence between the calculation result and the measured data. To further grasp the load transfer characteristics of the multi-disk anchor, an on-site slope anchoring prototype test is carried out. The data obtained from the on-site multi-disk anchor pull-out test are used to study the influence of the diameter of support disks, the spacing of support disks and the number of support disks on the ultimate bearing capacity and deformation control ability of multi-disk anchors. The test results show that in silty clay, when the distance between the support disks is greater than or equal to 4 times the diameter of the support disks, it can be considered that each support disk can work independently, giving full play to the bearing capacity of the multi-disk anchor; under the same conditions, compared with ordinary bolts, as the disk diameter increases from 300 mm to 500 mm and the number of disks increases from 1 to 3, the pull-out capacity of the multi-disk anchor increases significantly, and its deformation control ability is also greatly enhanced. The test results also show that the axial force transmission curve of the multi-disk anchor rod has a sudden change at the position of the support disk, presenting a steep drop, which fully reflects the contribution of the support disk in the uplift resistance. The research results have laid a good theoretical foundation for the engineering application of multi-disk anchor rods.

Key words: multi-disk anchor rod, ultimate bearing capacity, pull-out tests, load transfer, prototype test

CLC Number: 

  • U 418.5
[1] ZHONG Zi-lan, HAN Chun-tang, LI Jin-qiang, ZHAO Xin, MIAO Hui-quan. Ultimate bearing capacity of sand under lateral horizontal movement of shallowly buried pipelines [J]. Rock and Soil Mechanics, 2022, 43(S2): 95-103.
[2] ZHOU Yang, CHEN Yong-hui, KONG Gang-qiang, CHEN Long, CHEN Geng. Pile-soil stress ratio and settlement of in-situ shallow solidification-combined pipe-pile composite foundation under embankment load [J]. Rock and Soil Mechanics, 2022, 43(3): 688-696.
[3] WANG Jia-yu, LIU Run, JI Yong-hong, YANG Xu, CHEN Guang-si, WANG Xiao-lei, . Upper bound limit analysis of horizontal and moment ultimate bearing capacities of bucket foundation [J]. Rock and Soil Mechanics, 2022, 43(3): 777-788.
[4] QU Chun-lai, FU Di, LIU Shi-wei, LENG Xian-lun, LI Jian-he, SUN He-yuan, . Upper limit analysis for ultimate bearing capacity of heterogeneous stratified slope [J]. Rock and Soil Mechanics, 2022, 43(10): 2923-2932.
[5] YAN Qing, ZHAO Jun-hai, ZHANG Chang-guang. A new solution to the ultimate bearing capacity of reinforced foundation near slope based on the unified strength theory [J]. Rock and Soil Mechanics, 2021, 42(6): 1587-1600.
[6] YANG Jian, JIAN Wen-bin, HUANG Wei, HUANG Cong-hui, LUO Jin-mei, LI Xian-zhong, . Pull-out test and ultimate bearing capacity calculation of grouting branch-type anchor [J]. Rock and Soil Mechanics, 2021, 42(4): 1126-1132.
[7] HOU Zhen-kun, TANG Meng-xiong, HU He-song, LI Jian-hua, ZHANG Shu-wen, XU Xiao-bin, LIU Chun-lin, . Comparative study on the vertical load-bearing capacity of the drilling with pre-stressed concrete pipe cased pile based on in-situ and physical simulation tests [J]. Rock and Soil Mechanics, 2021, 42(2): 419-429.
[8] FENG Heng, GAO Fei-lüe, LIU Guan-shi, GAO Bin, XIAO Fei, ZENG Er-xian, . Full-scale tests of steel grillage foundation in aeolian sand areas [J]. Rock and Soil Mechanics, 2021, 42(12): 3328-3334.
[9] LIN Zhi, HU Wei, ZHAO Pu, CHEN Qiu-nan, HE Jian-qing, CHEN Jie, SHI Dan-da, . Model test study on inclined pull-out bearing characteristics of flat circular anchor in sand [J]. Rock and Soil Mechanics, 2021, 42(11): 3059-3068.
[10] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[11] HU Wei, MENG Jian-wei, YAO Chen, LEI Yong, . A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate [J]. Rock and Soil Mechanics, 2020, 41(9): 3049-3055.
[12] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[13] YANG Xue-xiang, JIAO Yuan-fa, YANG Yu-yi, . Development and test of aerated inflation controlled anchors [J]. Rock and Soil Mechanics, 2020, 41(3): 869-876.
[14] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[15] YANG Qing-guang, LIU Xiong, LIU Jie, HE Jie, LIANG Ling-chuan, CHEN Bin. Influence of the pre-grouting in free segment on the pullout test of prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(10): 3317-3325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .