›› 2015, Vol. 36 ›› Issue (S2): 702-708.doi: 10.16285/j.rsm.2015.S2.100

• 数值分析 • 上一篇    下一篇

横-竖立体加筋地基中附加应力的分析计算

侯 娟1,张孟喜2,张陶陶3,戴治恒1   

  1. 1. 上海大学 理学院,上海 200444;2. 上海大学 土木工程系,上海 200072;3. 上海三益建筑设计有限公司,上海 200040
  • 收稿日期:2014-12-10 出版日期:2015-08-31 发布日期:2018-06-14
  • 作者简介:侯娟,女,1975年,博士,讲师,主要从事土工合成材料和加筋土方面的工作。
  • 基金资助:
    国家自然科学基金(No.41202215;No.41372280)。

Vertical stress analysis and calculations in horizontal-vertical reinforced foundation

HOU Juan1, ZHANG Meng-xi2, ZHANG Tao-tao3, DAI Zhi-heng1   

  1. 1. College of Sciences, Shanghai University, Shanghai 200444, China; 2. Department of Civil Engineering, Shanghai University, Shanghai 200072, China; 3. Shanghai Sunyat Architectural Design Co., Ltd., Shanghai 200040, China
  • Received:2014-12-10 Online:2015-08-31 Published:2018-06-14

摘要: 建立了横-竖立体加筋(H-V筋)地基的有限元模型,通过分析地基中的竖向应力分布、水平向位移分布以及筋-土界面相互作用,发现横-竖立体加筋地基中的竖向应力在筋材下方出现扩散和重分布,并逐渐向土体下部传递,使得土体中整体的应力分布更加均匀;同时,横-竖筋材中的竖筋类似于一个侧壁,其提供的垂直侧向力约束了介于竖筋间的土体,限制了土体的侧向水平位移,使得地基中筋材上部土体的侧向水平位移变小。基于有限元模拟对横-竖立体加筋地基加固机制的认识,将横-竖立体筋视为作用在地基上的一维弹性地基梁,通过弹性地基梁理论,根据弗拉曼解推导求解了横-竖立体加筋地基中任意一点竖向附加应力的计算表达式。将模型计算结果与有限元模拟所得结果进行对比发现两者吻合良好。

关键词: 横-竖立体筋(H-V筋), 地基, 弹性地基梁, 竖向附加应力

Abstract: This paper aims at investigating the potential benefits of using new generation of reinforcement, horizontal-vertical reinforcement(H-V), to improve the bearing capacity and reduce the settlement of shallow foundations on soils. Finite element simulations of model tests were carried out to develop an understanding of influences of horizontal-vertical reinforcement on the bearing capacity, settlement, stress distribution, lateral displacement and the friction on the surface of reinforcement in horizontal-vertical reinforced soil foundation. Load-settlement response of strip footings on horizontal-vertical reinforced sand beds obtained from the numerical simulations are compared with the corresponding experimental results and the match is found to be good. The numerical simulation results show that the inclusion of horizontal-vertical reinforcement will redistribute the applied load to a wider area, thus minimizing stress concentration and achieving a more uniform stress distribution. The redistribution of stresses below the reinforced zone will result in reducing the consolidation settlement of the underlying weak sand soil, which is directly related to the induced stress. It also can be seen that the vertical inclusions of H-V reinforcement offer a strong passive resistance in the vicinity of the load, which prevents the sand particles from moving and rotating. Thus, it can be concluded that beside the tension membrane reinforcement mechanism, the vertical elements of horizontal-vertical inclusions kept the sand from being displaced under the applied load and redistributed the surcharge over a wider area. The horizontal-vertical reinforced base acts as a mattress to restrain the soil from moving upward/downward outside the loading area, redistributes the footing load over a wider area, and reduces the settlement, thereby increasing the shear strength of the composite system, which in turn substantially improves the bearing capacity of a sand bed reinforced with horizontal-vertical inclusions. In addition, failure mechanisms for horizontal-vertical reinforced soil foundations are proposed based on the finite element simulations and the results of experimental study on model footing tests conducted by the authors. Based on the beam on elastic foundation theory, vertical stress formulas that incorporate the contribution of reinforcements are then developed for horizontal-vertical reinforced foundations. The parameters such as the width, the length and the total depth of horizontal-vertical reinforcement were investigated. The predicted vertical stress values are compared with the results of finite element simulation on horizontal-vertical reinforced foundation. Good agreement is observed.

Key words: horizontal-vertical reinforcement(H-V), foundation, beam on elastic foundation, vertical stress

中图分类号: 

  • TU 473
[1] 李红坡, 陈征, 冯健雪, 蒙宇涵, 梅国雄, . 双层地基水平排水砂垫层位置优化研究[J]. 岩土力学, 2020, 41(2): 437-444.
[2] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
[3] 贺志军, 雷皓程, 夏张琦, 赵炼恒. 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41(2): 655-666.
[4] 黄宇华, 徐林荣, 周俊杰, 蔡雨, . 基于改进Terzarghi方法的桩网地基桩土应力计算[J]. 岩土力学, 2020, 41(2): 667-675.
[5] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[6] 熊辉, 杨丰, . 文克尔地基模型下液化土桩基水平振动响应分析[J]. 岩土力学, 2020, 41(1): 103-110.
[7] 孙来宾, 肖世国, . 抗滑桩受荷段前侧有限范围地层的 地基抗力系数取值方法[J]. 岩土力学, 2020, 41(1): 278-284.
[8] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[9] 陈文化, 张谦. 地铁列车进出站时土层空间振动特性分析[J]. 岩土力学, 2019, 40(9): 3656-3661.
[10] 高广运, 谢伟, 陈娟, 赵宏, . 高铁运行引起的高架桥群桩基础地面振动衰减分析[J]. 岩土力学, 2019, 40(8): 3197-3206.
[11] 朱彦鹏, 杜晓启, 杨校辉, 栗慧王君, . 挤密桩处理大厚度自重湿陷性黄土地区综合 管廊地基及其工后浸水试验研究[J]. 岩土力学, 2019, 40(8): 2914-2924.
[12] 张海廷, 杨林青, 郭芳, . 基于SBFEM的层状地基埋置管道动力 响应求解与分析[J]. 岩土力学, 2019, 40(7): 2713-2722.
[13] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[14] 张 奎, 赵成刚, 李伟华. 海底软土层对海洋地基场地动力响应的影响[J]. 岩土力学, 2019, 40(6): 2456-2468.
[15] 史 吏, 王慧萍, 孙宏磊, 潘晓东, . 群桩基础引发饱和地基振动的近似解析解[J]. 岩土力学, 2019, 40(5): 1750-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[4] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[5] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[6] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[7] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[8] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[9] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[10] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .