›› 2018, Vol. 39 ›› Issue (7): 2491-2498.doi: 10.16285/j.rsm.2016.2482

• 基础理论与实验研究 • 上一篇    下一篇

温度和应力下能源桩桩身加筋混凝土变形性质试验研究

黄 维1,谢中识1,杨永刚1,刘红中1,杨 龙1,王冰洁1,杨志慧1,程超杰1,项 伟1, 2,骆 进1   

  1. 1. 中国地质大学(武汉)工程学院,湖北 武汉,430074;2. 中国地质大学(武汉)教育部长江三峡地质灾害研究中心,湖北 武汉 430074
  • 收稿日期:2016-10-24 出版日期:2018-07-10 发布日期:2018-08-05
  • 通讯作者: 骆进,男,1984年生,博士,副教授,主要从事地热能开发中的工程地质以及水文地质等方面的研究工作。E-mail: jinluo@cug.edu.cn E-mail:huangwei@cug.edu.cn
  • 作者简介:黄维,男,1992年生,博士研究生,主要从事地热开发中工程地质以及岩石渗流、能量交换的研究工作。
  • 基金资助:

    国家自然科学基金资助项目(No. 41502238);中央高校杰出人才培育基金(No. CUGL150819);中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目(No. 1610491A21)。

Experimental study of deformation properties of reinforced concrete in energy piles under temperature and stress

HUANG Wei1, XIE Zhong-shi1, YANG Yong-gang1, LIU Hong-zhong1, YANG Long1, WANG Bing-jie1, YANG Zhi-hui1, CHENG Chao-jie1, XIANG Wei1, 2, LUO Jin1   

  1. 1. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China; 2. Three Gorges Research Center for Geo-hazards, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2016-10-24 Online:2018-07-10 Published:2018-08-05
  • Supported by:

    This work was supported by the National Science Foundation of China (41502238), the Central University Outstanding Talent Cultivation Fund (CUGL150819) and the Fundamental Research Founds for National University, China University of Geosciences (Wuhan) (1610491A21).

摘要: 能源桩是将地埋管换热器置于建筑桩基础中来实现地下换热的一种新型的地源热泵技术。然而,不同季节运行条件下,冷热变化导致的能源桩桩身混凝土的膨胀和收缩会影响能源桩的持续使用甚至危及建筑的安全。因此,寻找到一种温度和轴向应力作用下变形性能较好的桩身混凝土对能源桩技术安全使用和推广至关重要。探讨了桩身素混凝土和掺入不同含 量的钢纤维,聚丙烯纤维桩身加筋混凝土在温度和应力下的变形特性。导热系数测试表明,钢纤维的掺入能提高能源桩桩身混凝土的导热系数,聚丙烯纤维的掺入降低了能源桩桩身混凝土的导热系数。钢纤维掺入量为1.3%时,导热系数最大,为2.44 W/(m·K);热力学梯级加温试验表明,能源桩桩身混凝土掺入钢纤维,聚丙烯纤维均能有效减小应变,钢纤维最大应变减少量为62.43%,聚丙烯纤维最大应变减少量为61.11%;热力学全过程试验表明,钢纤维能有效减少制冷收缩应变,全过程中应变最小。综合对比3种能源桩桩身混凝土热物性参数及温度和应力作用下变形特性可知,钢纤维加筋混凝土更适合作为能源桩桩身材料。

关键词: 能源桩, 加筋混凝土, 变形特性, 应变

Abstract: The energy pile is a new type of ground source heat pump technology that places the ground heat exchanger in the building pile foundation to achieve underground heat exchange. However, the expansion and shrinkage of plie materials threat the long-term running and the building safety because that the energy piles often operate in cooling and heating thermal loads at different seasons. Grouting materials with proper thermal-mechanical characteristics are crucial for the safe use and widespread of the energy piles. This paper aims to investigate thermal-mechanical behaviours of concrete piles mixed with different contents of polypropylene fibre and steel fibre. The results show that thermal conductivity increased when adding steel fibre into concrete but decreased when adding polypropylene fibre. The maximum thermal conductivity was measured to be 2.44 W/(m·K) for the concrete mixed with 1.3% steel fibre. The thermodynamic step heating test showed the strain of the concrete reinforced both by steel fibre and polypropylene fibre was effectively reduced. The reductions of concrete reinforced by steel fibre and polypropylene fibre were about 62.43% and 61.11%, respectively. Furthermore, heating expansion and cooling shrinkage strain of concrete reinforced by steel fibre were both reduced during the heating and cooling load testing cycles, and the strain was the minimum in the whole process. Compared with three different types of concrete, steel fibre reinforced concrete is suggested as a suitable material for the grouting of energy piles.

Key words: energy piles, fibre reinforced concrete, deformation properties, strain

中图分类号: 

  • TU 375

[1] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[2] 李丽华, 余肖婷, 肖衡林, 马强, 刘一鸣, 杨 星, . 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178.
[3] 段君义, 杨果林, 胡敏, 邱明明, 俞昀, . 加卸载作用下加筋垫层变形特征试验研究[J]. 岩土力学, 2020, 41(7): 2333-2341.
[4] 王康宇, 庄妍, 耿雪玉, . 铁路路基粗粒土填料临界动应力试验研究[J]. 岩土力学, 2020, 41(6): 1865-1873.
[5] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[6] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[7] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[8] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[9] 李佳龙, 李钢, 于龙. 隔离非线性平面应变单元模型及其 在Drucker-Prager模型中的应用[J]. 岩土力学, 2020, 41(5): 1492-1501.
[10] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[11] 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188.
[12] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
[13] 周恩全, 宗之鑫, 王琼, 陆建飞, 左熹. 橡胶-粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
[14] 郎瑞卿, 杨爱武, 闫澍旺, . 修正等应变假定下刚性桩复合地基固结特性分析[J]. 岩土力学, 2020, 41(3): 813-822.
[15] 吴祁新, 杨仲轩. 基于应变响应包络的颗粒材料增量力学行为研究[J]. 岩土力学, 2020, 41(3): 915-922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!