›› 2016, Vol. 37 ›› Issue (S1): 175-182.doi: 10.16285/j.rsm.2016.S1.023

• 基础理论与实验研究 • 上一篇    下一篇

变轴压加载煤体变形破坏及瓦斯渗流试验研究

王 刚1, 2, 3,李文鑫1, 2,杜文州1, 2,王海洋4, 5,王鹏飞1, 2,孙文斌2   

  1. 1. 山东科技大学 矿山灾害预防控制-省部共建国家重点实验室培育基地,山东 青岛 266590;2. 山东科技大学 矿业与安全工程学院,山东 青岛 266590;3. 中煤科工集团重庆研究院有限公司,重庆 400037;4. 重庆大学,煤矿灾害动力学与控制国家重点实验室,重庆 400044; 5. 重庆大学,复杂煤气层瓦斯抽采国家地方联合工程实验室,重庆 400044
  • 收稿日期:2014-03-18 出版日期:2016-06-16 发布日期:2018-06-09
  • 通讯作者: 李文鑫,男,1990年生,硕士研究生,主要从事煤矿通防灾害防治技术方面的研究。E-mail: 15275324533@163.com E-mail:ckwanggang@163.com
  • 作者简介:王刚,男,1984年生,博士,副教授,主要从事瓦斯灾害预测与防治方面的研究工作。
  • 基金资助:

    国家自然科学基金(No. 51304128);山东省自然科学基金(No. ZR2013EEQ015);高等学校博士学科点专项科研基金新教师类资助课题(No. 20133718120013);山东科技大学杰出青年科技人才支持计划(No. 2015JQJH105);山东省重点研究计划项目(No. 2015GSF120016)

Experimental study of coal deformation and permeability characteristics of gas under variable axial compressive loadings

WANG Gang1, 2, 3, LI Wen-xin1, 2, DU Wen-zhou1, 2, WANG Hai-yang4, 5, WANG Peng-fei1, 2, SUN Wen-bin2   

  1. 1. Key Laboratory of Mine Disaster Prevention and Control Co-sponsored by Province and Ministry, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. College of Natural Resources and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 3. China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China; 4. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 5. National & Local Joint Engineering Laboratory of Gas Drainage in Complex Coal Seam, Chongqing University, Chongqing 400044, China
  • Received:2014-03-18 Online:2016-06-16 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(51304128); the Natural Science Foundation of Shandong Province (ZR2013EEQ015); the Specialized Research Fund for the Doctoral Program of Higher Education(20133718120013); the Supported by Program for the Outstanding Young Scientists of Shandong University of Science and Technology(2015JQJH105) and the Key Program of Research and Development of Shandong Province(2015GSF120016).

摘要: 为探究煤岩在变轴压加载下的变形破坏和瓦斯渗流演化规律,以原煤煤粉压制的煤体试件为研究对象,采用含瓦斯煤热流固耦合三轴伺服渗流试验系统,进行了5种不同轴压加载路径下的煤体三轴压缩及瓦斯渗流试验。研究结果表明,煤体变形可分为压密、稳定发展、非稳定破裂发展和破裂后4个阶段;压密阶段试件的应变变化速率主要与张开性结构面和裂隙有关,与轴压加载区间无关,稳定发展阶段虽然轴压加载速率不同,但在相同的轴压加载区间,轴向应变变化速率基本相同;变轴压加载前期煤体渗透率与轴压的加载速率呈负相关变化,中后期渗透率变化速率与轴压加载速率相关性不大。研究结论对指导冲击地压以及煤与瓦斯突出的监测预警有着重要意义。

关键词: 变轴压, 应变, 变形, 瓦斯渗流, 渗透率

Abstract: To explore the deformation and gas seepage rules of coal and rock under variable axial compression loadings, with coal pulverized coal specimen pressed for the study, using triaxial stress thermal-hydro-mechanical coal containing gas permeability system, five kinds of coal in different axial compressive loading paths under three axial compressions and gas seepage test were carried out. The results show that: Deformation of coal body can be divided into four stages: compaction, stable development, non stable fracture development and fracture. Strain rate of change of the specimen compaction stage mainly related to open structure surface and the fracture and regardless of the axial compressive load range; the stable development stage, while the axial compression loading rate is different, but in the axial compression loading the same interval, variation of axial strain rate is basically the same. The coal permeability and axial compression loading rate is negatively correlated with changes during the variable axial compression loading early stage and the permeability variation rate and axial compressive loading rate and little correlation in the late period. The above conclusions have important significance to guide the monitoring and early warning of rockburst and coal and gas outburst.

Key words: axial compression, strain, deformation, gas seepage, permeability

中图分类号: 

  • TD 7.3

[1] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[2] 杨钊, 乔春生, 陈松. 基于蒙特卡罗法的岩体变形模量统计 特征及参数权重分析[J]. 岩土力学, 2020, 41(S1): 271-278.
[3] 郭健, 陈健, 胡杨. 基于小波智能模型的地铁车站基坑变形 时序预测分析[J]. 岩土力学, 2020, 41(S1): 299-304.
[4] 赵久彬, 刘元雪, 何少其, 杨骏堂, 柏准, . 三峡库区阶跃变形滑坡水平位移与降雨量 数学统计模型[J]. 岩土力学, 2020, 41(S1): 305-311.
[5] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[6] 李丽华, 余肖婷, 肖衡林, 马强, 刘一鸣, 杨 星, . 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178.
[7] 段君义, 杨果林, 胡敏, 邱明明, 俞昀, . 加卸载作用下加筋垫层变形特征试验研究[J]. 岩土力学, 2020, 41(7): 2333-2341.
[8] 童星, 袁静, 姜叶翔, 刘兴旺, 李瑛, . 基于Mindlin解的基坑分层卸荷附加应力计算 及回弹变形的多因素影响分析[J]. 岩土力学, 2020, 41(7): 2432-2440.
[9] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[10] 白雪元, 王学滨, 舒芹, . 静水压力下内摩擦角对圆形洞室围岩局部破裂 影响的连续-非连续模拟[J]. 岩土力学, 2020, 41(7): 2485-2493.
[11] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[12] 王康宇, 庄妍, 耿雪玉, . 铁路路基粗粒土填料临界动应力试验研究[J]. 岩土力学, 2020, 41(6): 1865-1873.
[13] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[14] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[15] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!