›› 2016, Vol. 37 ›› Issue (S1): 547-556.doi: 10.16285/j.rsm.2016.S1.071

• 数值分析 • 上一篇    下一篇

北山花岗岩热破裂室内模拟试验研究

陈世万1,杨春和1, 2,刘鹏君3,王贵宾2,魏 翔1   

  1. 1. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044;2. 中国科学院武汉岩土力学研究所,湖北 武汉 430071; 3. 中国地质大学(武汉) 工程学院,湖北 武汉430074
  • 收稿日期:2015-11-09 出版日期:2016-06-16 发布日期:2018-06-09
  • 作者简介:陈世万,男,1990年生,博士研究生,主要从事高放废物地质处置岩石力学方面研究工作。
  • 基金资助:
    高放废物地质处置地下实验室安全技术评价研究(2014-2017年);国家自然科学基金(No. 51234004)

Laboratory simulation test of thermal cracking of Beishan granite

CHEN Shi-wan1, YANG Chun-he1, 2, LIU Peng-jun3, WANG Gui-bin2, WEI Xiang1   

  1. 1. State key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University,Chongqing 400044, China; 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2015-11-09 Online:2016-06-16 Published:2018-06-09
  • Supported by:
    This work was supported by the Research on Safety Technology Evaluation of Underground Laboratory for Geological Disposal of High Level Radioactive Waste (2014-2017) and the National Natural Science Foundation of China (51234004).

摘要: 岩石热破裂是高放废物地质处置工程中需深入研究的课题。对我国高放废物重点预选场址甘肃北山的花岗岩开展室内热破裂模拟试验研究,采用多通道温度测试仪、声发射、波速层析成像和数码显微镜等手段研究了该花岗岩热破裂过程。试验表明,(1)热破裂从试件端部开始产生,逐步向内缓慢扩展,表现出分段性和独立性;(2)根据声发射撞击率可将热破裂可分为稳定热损伤、宏观裂纹形成、宏观裂纹扩展、裂纹冷却闭合4个阶段,声发射定位的时空演化规律清楚地揭示了裂纹从试件上端部向内部扩展的规律;(3)波速层析成像指示了宏观裂纹位置及高温对岩石造成显著损伤的区域,热应力产生的损伤集中在试件边界,范围小,损伤严重,高温造成的损伤集中在钻孔附近高温区,范围较大,损伤略轻微;(4)监测多通道温度,获得了试件内的温度场并为数值模拟参数选取提供验证,采用有限元程序进行了热力耦合数值模拟,从机制上初步解释了热破裂现象,研究认为综合声发射实时监测热破裂过程和波速层析成像能实现对热损伤的量化的特性可实现岩石热破裂的动态监测和损伤量化,为今后地下实验室相关试验的开展和认识高放废物处置长期稳定性做了有意义的探索。

关键词: 热破裂, 花岗岩, 声发射, 声波层析成像, 高放废物

Abstract: Thermal cracking of rock is a critical subject in high radioactive waste disposal engineering. A laboratory simulation test was conducted to study the thermal cracking of Beishan granite. The temperature measuring device, acoustic emission (AE) system, ultrasonic computer tomography(CT) and microscope were applied to the test. The results show that the macrocracks originated at the outer edges of the specimen and then extended inward. The growth of cracks was mutational, and the latter cracks were suspected little impact of the former cracks. Four stages were observed during the test: stable thermal damage stage, macrocrack formation stage, macro-crack growth and the crack closure stage during cooling period. The evolution of AE locations reveals the growth of cracks’ propagation process. The ultrasonic imaging of the cooled sample was obtained by the elastic wave CT. The cracks’ positions and area suffered heat damage could be visualized in the CT imaging. The study shows that system combined AE and ultrasonic CT is effective to characterize the evolution of thermal-cracking process and quantify the damage. Temperature field obtained from a group of thermal couples can be used to verify the parameter for numerical simulation. The results of numerical simulation show that the high tensile stress at the time of macrocrack appearing is consistent with the tensile strength of Beishan granite. Thermal induced damage and thermal-mechanical induced crack are analyzed systematically, so as to provide reference for the future related tests conducted in underground laboratory.

Key words: thermal cracking, granite, acoustic emission, ultrasonic imaging, high-level radioactive waste

中图分类号: 

  • TU 452
[1] 张虎元, 赵秉正, 童艳梅, . 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(S1): 1-8.
[2] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[3] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[4] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[5] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[6] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[7] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[8] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[9] 侯会明, 胡大伟, 周辉, 卢景景, 吕涛, 张帆. 考虑开挖损伤的高放废物地质处置库温度-渗流-应力耦合数值模拟方法[J]. 岩土力学, 2020, 41(3): 1056-1064.
[10] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[11] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[12] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[13] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[14] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(S1): 109-118.
[15] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!