岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1823-1831.doi: 10.16285/j.rsm.2018.0067

• 基础理论与实验研究 • 上一篇    下一篇

单轴加载煤体破坏特征与电荷规律研究及应用

王 岗1,潘一山1, 2,肖晓春1   

  1. 1. 辽宁工程技术大学 力学与工程学院,辽宁 阜新 123000;2. 辽宁大学 物理学院,辽宁 沈阳 110036
  • 收稿日期:2018-01-10 出版日期:2019-05-11 发布日期:2019-06-02
  • 作者简介:王岗,男,1992年生,博士研究生,主要从事矿山动力灾害的预测及防治方面的研究工作。
  • 基金资助:
    国家重点研发计划项目(No. 2017YFC0804208;No. 2016YFC0801403-4);国家自然科学基金面上项目(No. 51774164)。

Study and application of failure characteristics and charge law of coal body under uniaxial loading

WANG Gang1, PAN Yi-shan1, 2, XIAO Xiao-chun1   

  1. 1. School of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; 2. School of Physics, Liaoning University, Shenyang, Liaoning 110036, China
  • Received:2018-01-10 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Key Research Projects(2017YFC0804208, 2016YFC0801403-4) and the General Program of National Nature Science Foundation of China (51774164).

摘要: 为了完善电荷感应方法用于冲击地压的预测预报,利用自主研制的电荷监测系统开展了室内单轴压缩条件下煤样破裂电荷监测试验。重点分析了煤样的破坏类型、力学特性以及不同破坏类型下电荷时-频域信号规律,并对试验结果进行了工程验证。研究结果表明:煤样变形破坏特征可分为单剪型、共轭剪切型和破碎型;单剪型煤样电荷时域信号仅在峰后破坏初期,应力跌落至97% 左右时产生,前兆信息难以捕捉,信号具有孤立性,幅值较高,电荷频率分布离散,主频为250 Hz。此特征电荷信号预示着相应工程煤体可能发生局部化破坏,将集聚的能量瞬间释放,冲击危害程度较大;共轭剪切型煤样电荷时域信号在强化损伤后期,应力达到(85%~100%) 时开始产生,信号具有间隔突发性,主频为150 Hz。预示着煤体可能发生分区化破裂,能量间断释放,冲击危害程度次之;破碎型煤样电荷时域信号在强化损伤初期,应力达到(70%~85%) 时就开始产生,前兆信息易于捕捉,信号具有群发性,幅值较低,主频为0 Hz。预示着煤体可能发生均匀型破碎,能量缓慢释放,冲击危害程度较小。现场监测结果表明,在工作面煤体破碎区和发生煤炮时监测到的电荷信号特征,与试验室煤样发生均匀型破碎和单剪型破裂而产生的电荷信号特征具有高度相似性,验证了试验室结果的可靠性。

关键词: 煤样, 破坏特征, 电荷感应, 冲击地压, 预测

Abstract: In order to improve the prediction of rock burst with charge induction, the charge monitoring test was carried out on fractured coal samples under uniaxial compression by the self-developed charge monitoring system in the laboratory. The failure types, mechanical properties of coal samples and the law of the charge time-frequency domain signals under different damage types were analyzed emphatically. Moreover, the test results were verified in practice. The results show that the deformation and failure characteristics of coal samples can be divided into single shearing type, conjugated shearing type, and shattered type. The charge time-domain signals of coal samples with single shearing occur only in the early stage of post peak failure, and the stress falls to about 97% . Since the signal characterizes a single burst with higher amplitude, discrete charge frequency distribution and the main frequency of 250 Hz, it is difficult to capture the precursory information. Those characteristics of charge signal indicate that the corresponding engineering coal body may occur a localized failure with releasing the accumulated energy instantly, which leads to significant impact hazard. The charge time-domain signals of coal samples with conjugated shearing are produced in the later period of intensified damage, and the stress reaches (85%~100%) . The signal has an interval burst, and the main frequency is 150 Hz. This indicates that the partitioned rupture occurs with accumulated energy released gradually, and the impact hazard degree is the second. The charge time-domain signals of shattered coal samples are generated in the early stage of intensified damage, and the stress reaches (70%~85%) . The premonitory information is easy to capture because the signals burst continuously with low amplitude and the main frequency of 0 Hz. These results indicate that the coal body may be homogeneously broken with accumulated energy released slowly, and the impact hazard degree is lower. The field monitoring results show that characteristics of charge signals both in crushing area of working face and the occurrence of coal firing gun are highly similar to those charge signals which are produced by coal samples in homogeneous shattered type and single shearing type in the laboratory. These results verify the reliability of the results obtained from the laboratory.

Key words: coal sample, failure characteristic, charge induction, rock burst, prediction

中图分类号: 

  • TD 324
[1] 秦爱芳, 胡宏亮. 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41(S1): 123-131.
[2] 郭健, 陈健, 胡杨. 基于小波智能模型的地铁车站基坑变形 时序预测分析[J]. 岩土力学, 2020, 41(S1): 299-304.
[3] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
[4] 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970.
[5] 陈光波, 秦忠诚, 张国华, 李谭, 李敬凯, . 受载煤岩组合体破坏前能量分布规律[J]. 岩土力学, 2020, 41(6): 2021-2033.
[6] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[7] 王凯兴, 窦林名, 潘一山, OPARIN V N . 块系岩体非协调动力响应特征试验研究[J]. 岩土力学, 2020, 41(4): 1227-1234.
[8] 范日东, 杜延军, 刘松玉, 杨玉玲, . 无机盐溶液作用下砂−膨润土竖向隔离屏障 材料化学相容性试验研究[J]. 岩土力学, 2020, 41(3): 736-746.
[9] 宋文成, 梁正召, . 承压水上开采倾斜底板破坏特征 与突水危险性分析[J]. 岩土力学, 2020, 41(2): 624-634.
[10] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[11] 王忠凯, 徐光黎. 盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测[J]. 岩土力学, 2020, 41(1): 285-294.
[12] 程爱平, 张玉山, 戴顺意, 董福松, 曾文旭, 李丹峰, . 单轴压缩胶结充填体声发射参数 时空演化规律及破裂预测[J]. 岩土力学, 2019, 40(8): 2965-2974.
[13] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[14] 张传庆, 刘振江, 张春生, 周辉, 高阳, 侯靖, . 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496.
[15] 马德鹏, 周岩, 刘传孝, 商岩冬, . 不同卸围压速率下煤样卸荷破坏能量演化特征[J]. 岩土力学, 2019, 40(7): 2645-2652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!