岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1663-1672.doi: 10.16285/j.rsm.2018.0114

• 基础理论与实验研究 • 上一篇    下一篇

水饱和边坡夹层热-孔隙水-力耦合作用模型及应用

贺桂成,廖家海,李丰雄,王 昭,章求才,张志军   

  1. 南华大学 核资源工程学院,湖南 衡阳 421001
  • 收稿日期:2018-01-18 出版日期:2019-05-11 发布日期:2019-06-02
  • 作者简介:贺桂成,男,1977年生,博士,副教授,硕士生导师,主要从事岩土工程灾害预测与控制方面的教学与科研工作
  • 基金资助:
    国家自然科学基金(No. 51374129,No. 51774187);湖南省科技厅重点研发计划(No. 2017SK2280);湖南省教育厅重点科研基金(No. 17A184);湖南省自然科学基金(No. 2017JJ4009);南华大学“铀矿山岩土工程灾害预测与控制”校级创新团队计划项目(No. NHCXTD04)

A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application

HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun   

  1. School of Nuclear Resource Engineering, University of South China, Hengyang, Hunan 421001, China
  • Received:2018-01-18 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51374129,51774187), the Key Research and Development Program of Hunan Provincial Science and Technology Department (2017SK2280), the Key Research Foundation of Education Bureau of Hunan Province (17A184), the Hunan Provincial Natural Science Foundation (2017JJ4009) and the Innovation Team Project Plan for Prediction and Control of Uranium Mine Geotechnical Engineering Disaster of USC (NHCXTD04).

摘要: 为了研究温度对水饱和边坡夹层力学参数的影响,将水饱和边坡夹层视为固-液两相的线弹性体,建立了水饱和边坡夹层热-孔隙水-力耦合作用的力学模型,并推导了其耦合控制方程;采用物理相似模拟的方法,建立了与边坡原型相似的试验模型,研究温度引起的边坡夹层力学参数的变化特征;通过比较分析理论计算结果与模型试验结果,验证了所建立的耦合力学模型的适用性。研究结果表明:孔隙水压力系数和热压力系数是引起水饱和边坡夹层孔隙水压力增加的关键控制因素;孔隙水压力系数取决于孔隙排水压缩特性和固相介质压缩特性,这两者差值越大,孔隙水压力系数越大;孔隙水热膨胀系数和孔隙体积热膨胀系数是影响热压力系数的主要因素,这两者差值越大,热压力系数也越大;边坡夹层孔隙水压力随温度升高呈现出先缓慢增加而后急剧增加的变化特征,而黏聚力和抗剪强度随温度升高而缓慢降低,且孔隙水压力的理论计算结果与试验测试结果吻合良好。因此,水饱和边坡夹层热-孔隙水-力耦合作用的力学模型能较好地反映孔隙水压力在加热升温过程中的变化特征,为科学地预测和控制类似边坡工程的稳定性提供了参考。

关键词: 水饱和边坡, 温度, 热-孔隙水-力耦合作用模型, 热膨胀系数, 孔隙水压力系数

Abstract: To investigate the effect of temperature on mechanical parameters of a weak interlayer in water-saturated slope, the interlayer is regarded as a linear elastic body of coupled solid-liquid phase. A mechanical model for the thermal-pore water-mechanical interaction of the interlayer in water-saturated slope is established, and its coupling control equation is deduced. Using the physical similarity method, an experimental model similar to the slope prototype is established to study the variations of the inerlayer mechanical parameters caused by temperature. The proposed model is verified by comparing the theoretical results with the corresponding experimental results. It is found that the pore water pressure coefficient and thermal expansion coefficient are the key factors causing the increase of pore water pressure in the saturated interlayer. The pore water pressure coefficient depends on the compression characteristics of pore drainage and the solid medium. The larger the difference between these two compression characteristics, the larger the pore water pressure coefficient. Thermal expansion coefficient of pore water and thermal expansion coefficient of pore volume are the main factors affecting thermal pressure coefficient. A larger difference between them can result in a greater thermal pressure coefficient. Pore water pressure in the saturated interlayer slowly increases first and then dramatically increases with the increase of temperature, while the cohesion and shear strength of the saturated interlayer tardily decrease with the increase of temperature. Theoretical values of the saturated interlayer pore water pressure are in good agreement with the results from model test. Therefore, the proposed model can reflect the change characteristics of pore water pressure at different temperatures, which can provide some useful references to predict and control the stability of similar saturated slopes containing a weak interlayer.

Key words: saturated slope, temperature, coupled thermo-pore water-mechanical model, thermal expansion coefficient, pore water pressure coefficient

中图分类号: 

  • O 319.56
[1] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[2] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[3] 徐衍, 周晓敏, 和晓楠, 吴涛, 张建岭, 李森. 矿山竖井井壁与围岩热−固耦合作用分析[J]. 岩土力学, 2020, 41(S1): 217-226.
[4] 周祥运, 孙德安, 罗汀. 核废料处置库近场温度半解析研究[J]. 岩土力学, 2020, 41(S1): 246-254.
[5] 骆赵刚, 汪时机, 杨振北, . 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323.
[6] 胡田飞, 王天亮, 常键, 刘建勇, 卢玉婷, . 基于有限体积法的冻土水热耦合程序开发及验证[J]. 岩土力学, 2020, 41(5): 1781-1789.
[7] 孟祥传, 周家作, 韦昌富, 张坤, 沈正艳, 杨周洁, . 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960.
[8] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[9] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能的温度效应[J]. 岩土力学, 2020, 41(1): 39-45.
[10] 宋勇军, 杨慧敏, 张磊涛, 任建喜. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.
[11] 刘伟俊, 张晋勋, 单仁亮, 杨昊, 梁辰, . 渗流作用下北京砂卵石地层多排管局部 水平冻结体温度场试验[J]. 岩土力学, 2019, 40(9): 3425-3434.
[12] 方金城, 孔纲强, 陈斌, 车平, 彭怀风, 吕志祥, . 混凝土水化作用对群桩热力学特性影响现场试验[J]. 岩土力学, 2019, 40(8): 2997-3003.
[13] 尹黎阳, 唐朝生, 谢约翰, 吕超, 蒋宁俊, 施斌, . 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.
[14] 杨骐莱, 熊勇林, 张 升, 刘干斌, 郑荣跃, 张 锋, . 考虑温度影响的软岩弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1898-1906.
[15] 陈卫忠, 李翻翻, 马永尚, 雷 江, 于洪丹, 邢天海, 郑有雷, 贾晓东, . 并联型软岩温度-渗流-应力耦合三轴流变仪的研制[J]. 岩土力学, 2019, 40(3): 1213-1220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!