岩土力学 ›› 2018, Vol. 39 ›› Issue (12): 4482-4492.doi: 10.16285/j.rsm.2018.0542

• 基础理论与实验研究 • 上一篇    下一篇

隧道大变形机制及处治关键技术模型试验研究

杨忠民1,高永涛1,吴顺川1,2,周 喻1   

  1. 1. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083;2. 昆明理工大学 国土资源工程学院,云南 昆明 650093
  • 收稿日期:2018-04-04 出版日期:2018-12-11 发布日期:2018-12-31
  • 通讯作者: 高永涛,男,1962年生,博士,教授,博士生导师,主要从事岩土工程、采矿工程方面的教学与研究工作。E-mail: gaoyongtao@vip.sina.com E-mail: yangzhongmin2010@163.com
  • 作者简介:杨忠民,男,1988年生,博士研究生,主要从事隧道工程和采矿工程方面的研究工作。
  • 基金资助:
    科技北京百名领军人才培养工程(No.Z151100000315014)。

Physical model test on large deformation mechanism and key treatment techniques of tunnel

YANG Zhong-min1, GAO Yong-tao1, WU Shun-chuan1,2, ZHOU Yu1   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
  • Received:2018-04-04 Online:2018-12-11 Published:2018-12-31
  • Supported by:
    This work was supported by the Beijing Training Project for the Leading Talents in S & T (Z151100000315014).

摘要: 大变形是隧道建设中无法完全避免的灾害之一,发生后若处治不当极有可能出现多次换拱甚至塌方等二次灾害。通过相似模型试验,采用自行设计的隧道模型开挖装置和围岩内部位移监测装置,研究了隧道开挖和埋深增大过程中围岩渐进性破坏过程及位移和应力变化规律,揭露出预防隧道大变形的重点支护部位,并进一步研究了大变形出现后处治过程中衬砌的破坏规律,明确了大变形处治时的支护措施。试验结果表明:(1)隧道产生大变形过程中,拱顶与拱底的变形量大于拱腰与拱脚的变形量,且随着埋深增大,差值逐渐增大;(2)大变形产生后隧道拱顶径向和切向应力值均减小,而拱脚切向应力值大幅上升;(3)更换变形拱架时,更换位置附近衬砌拱顶处可能出现张拉破坏,拱腰处可能出现剪切破坏,因此,大变形处治时需保留两侧衬砌的临时钢支撑,必要时需增设底部横支撑或临时仰拱。该研究结果有助于得到大变形发生时和发生后处治时的防控重点,为大变形的预防及安全处治提供指导和参考。

关键词: 隧道大变形, 模型试验, 模型开挖装置, 渐进性破坏, 支护关键部位

Abstract: The large deformation is one of tunnel disasters that cannot be completely avoided. When the tunnel is not properly treated after large deformation, it is likely to cause secondary disasters such as arches multiple replacement or tunnel collapses. With the self-designed excavation device and the internal displacement-measuring device for surrounding rock, a physical model test system was used to investigate the tunnel progressive failure, deformation and stress variation during tunnel excavation and buried depth increasing, thus revealing the key supporting parts to prevent large deformation of tunnels. Furthermore, the failure characteristics of the primary lining during large deformation treatment was also studied, and the supporting measures for large deformation treatment were defined. The results are summarised as follows. During the large deformation of the tunnel, the deformation of the vault and the arch bottom are larger than that of the arch waist and arch foot, and the difference increases gradually with the increase of buried depth. The radial and tangential stresses of the vault of tunnel decrease during the large deformation, while the tangential stress of the arch foot increases sharply. When the deformed arch frame is replaced, there may be tension failure at the lining arch near the replacement position, and shear failure at the lining arch waist. Therefore, it is necessary to retain the temporary steel support when the large deformation is observed, and the bottom horizontal support or the temporary inverted arch should be added. This study is helpful to obtain the key prevention and control location during and after the large deformation, which provides guidance and reference for the prevention and safe treatment of large deformation.

Key words: tunnel large deformation, physical model test, excavation device, progressive failure, support key parts

中图分类号: 

  • TU 457
[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[3] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[4] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[5] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[6] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[7] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[8] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[9] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[10] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[11] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[12] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[13] 侯公羽, 胡涛, 李子祥, 谢冰冰, 肖海林, 周天赐, . 基于分布式光纤技术的采动影响下覆岩 变形演化规律试验研究[J]. 岩土力学, 2020, 41(3): 970-979.
[14] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[15] 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!