岩土力学 ›› 2019, Vol. 40 ›› Issue (10): 3724-3732.doi: 10.16285/j.rsm.2018.1305
周科平,刘 维,周彦龙,林 允,薛 轲
ZHOU Ke-ping, LIU Wei, ZHOU Yan-long, LIN Yun, XUE Ke
摘要: 通过离心试验产生的渗透压力对试样进行模拟,开展单轴压缩力学试验来研究渗透力对充填体力学特性的影响,且对充填体试样的变形特性随渗透压力变化的规律进行讨论。研究结果表明,随着渗透力增大,试样应力-应变曲线压密阶段的区间先减小后增大,弹性阶段的区间缩小,屈服阶段不明显。试验过程从低渗透压力到高渗透压力,试样的破坏模式依次表现为拉伸破坏、剪切破坏,且产生的裂纹数目增多,形态趋于复杂。在力学试验的基础上,考虑到试样压密阶段的应力-应变关系,建立不同渗透力的充填体试样损伤软化本构模型。验证结果显示,理论曲线和试验曲线高度吻合,该本构模型适用于分析不同渗透力的充填体单轴压缩力学问题。该研究为超重力离心模拟和地下渗流试验开展提供参考。
中图分类号:
[1] | 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29. |
[2] | 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94. |
[3] | 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336. |
[4] | 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188. |
[5] | 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232. |
[6] | 蒋长宝, 魏 财, 段敏克, 陈昱霏, 余塘, 李政科, . 饱水和天然状态下页岩滞后效应及阻尼特性研究[J]. 岩土力学, 2020, 41(6): 1799-1808. |
[7] | 孟庆彬, 钱唯, 韩立军, 蔚立元, 王丛凯, 周星, . 极弱胶结岩体再生结构的形成机制 与力学特性试验研究[J]. 岩土力学, 2020, 41(3): 799-812. |
[8] | 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018. |
[9] | 金青, 王艺霖, 崔新壮, 王成军, 张珂, 刘正银, . 拉拔作用下土工合成材料在风化料-废弃轮胎 橡胶颗粒轻质土中的变形行为研究[J]. 岩土力学, 2020, 41(2): 408-418. |
[10] | 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534. |
[11] | 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560. |
[12] | 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686. |
[13] | 何鹏飞, 马巍, 穆彦虎, 黄永庭, 董建华, . 黄土−砂浆块界面剪切特性试验及本构模型研究[J]. 岩土力学, 2019, 40(S1): 82-90. |
[14] | 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467. |
[15] | 彭守建, 岳雨晴, 刘义鑫, 许江, . 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291-3299. |
|