岩土力学 ›› 2019, Vol. 40 ›› Issue (10): 3813-3822.doi: 10.16285/j.rsm.2018.1308

• 基础理论与实验研究 • 上一篇    下一篇

硬塑-流塑浅埋黄土隧道变形特性及合理预留 变形量模型试验研究

王道远1, 2, 3,袁金秀1,朱永全2, 3,刘佳1,王洪凡2   

  1. 1. 河北交通职业技术学院 土木工程系,河北 石家庄 050091;2. 石家庄铁道大学 土木工程学院,河北 石家庄 050043; 3. 西南交通大学 交通隧道工程教育部重点实验室,四川 成都 610031
  • 收稿日期:2018-08-26 出版日期:2019-10-11 发布日期:2019-10-19
  • 通讯作者: 袁金秀,女,1980年生,硕士,副教授,主要从事岩土及地下工程的教学与研究工作。E-mail: xiugirl2007@163.com E-mail:wtg-888@163.com
  • 作者简介:王道远,男,1982年生,博士研究生,副教授,主要从事隧道及地下工程的教学与研究工作。
  • 基金资助:
    国家自然科学基金(No. 51478277);河北省自然科学基金(No. E201619002);河北省人才工程培养经费资助科研项目(No.A201500116);河北省重点研发计划项目(No. 172776471)。

Model test study of deformation characteristics and reasonable reserved deformation of shallow-buried loess tunnel with hard-flow plastic

WANG Dao-yuan1, 2, 3, YUAN Jin-xiu1, ZHU Yong-quan2, 3, LIU Jia1, WANG Hong-fan2   

  1. 1. Department of Civil Engineering, Hebei Jiaotong Vocational and Technical College, Shijiazhuang, Hebei 050091, China; 2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2018-08-26 Online:2019-10-11 Published:2019-10-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51478277), the Natural Science Foundation of Hebei Province (E201619002), the Hebei Talent Training Fund (A201500116) and the Key R & D Project of Hebei Province (172776471).

摘要: 开展硬塑-流塑浅埋黄土隧道室内大型三维YTLH岩土联合地质模型试验,对比分析了硬塑、软塑、流塑3种状态,12 m和24 m两种埋深下的围岩内部位移、预收敛变形、掌子面挤出位移和径向围岩压力。结果表明:硬塑、软塑和流塑条件下围岩内部位移差率均呈现出“拱顶极小、两侧边墙极大”的特征,拱顶位移差率小于20%、两侧边墙位移差率大于91%;拱顶设计4.5 m长锚杆抗拉效果甚微,边墙围岩内部位移差利于锚杆抗拉效应的充分发挥;硬塑、软塑、流塑预收敛率分别接近65%、70%、80%,开挖对掌子面前方影响范围分别为0.5D、0.6D、0.8D,且呈现出直立型、鼓出型、滑塌型不同失稳破坏模式;应力释放率关系为硬塑<软塑<流塑,软流塑态拱顶应力释放率最大约70%,实际工程应避免软流塑态瞬时应力释放过渡而失稳。双线浅埋黄土隧道合理预留变形量建议取值:硬塑(拱顶55~70 mm、边墙15~20 mm),软塑(拱顶166~180 mm、边墙40~50 mm),流塑(拱顶290~300 mm、边墙125~140 mm),且拱顶和边墙之间按曲线过渡非等量留设。

关键词: 硬塑-流塑, 浅埋, 黄土隧道, 变形特性, 预留变形量, 模型试验

Abstract: A geological model test of large 3D YTLH soil-rock combination was carried out to analyze the internal displacement, convergent deformation, face extrusion displacement and radial pressure of surrounding rock under the three states (hard plastic, soft plastic, flow plastic) and two different depths (12 m, 24 m). The results show that the internal displacement difference of surrounding rock presents the characteristics of ‘minimum on arch crown and maximum at both sides’, and the displacement difference of vault is less than 20% and the value of side wall is greater than 91%. The 4.5 m long anchor bolt on the arch has little effect on the vault, but the tensile effect of anchor bolt on side walls is fully exerted. The pre-convergence rates of hard plastic, soft plastic and flow plastic nearly reach 65%, 70%, and 80%, and the influence ranges on excavation face are 0.5D, 0.6D, and 0.8D, respectively, which shows different failure modes of vertical type, drum out type, and slump type. The stress release rate of hard plastic is the smallest, followed by soft plastic and flow plastic, and the maximum stress release rate of flow plastic is over 70%. Excess stress release should be avoided to lose stability in the actual engineering. The reasonable deformation allowance of double-line shallow-buried loess tunnel is recommended as follows: hard plastic formation (55-70 mm of vault, 15-20 mm of side wall), soft plastic formation (166-180 mm of vault, 40-50 mm of side wall), and flow plastic formation (290-300 mm of vault, 125-140 mm of side wall). The reserved deformation between vault and side wall can be set by curve transition with non-equal quantity.

Key words: hard-flow plastic, shallow burial, loess tunnel, deformation properties, reserved deformation, model test

中图分类号: 

  • U 45
[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 孙曦源, 衡朝阳, 周智, 张剑涛. 某超浅埋过街通道围岩压力的极限平衡求解方法[J]. 岩土力学, 2020, 41(S1): 312-318.
[3] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[4] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[5] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[6] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[7] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[8] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[9] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[10] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[11] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[12] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[13] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[14] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[15] 侯公羽, 胡涛, 李子祥, 谢冰冰, 肖海林, 周天赐, . 基于分布式光纤技术的采动影响下覆岩 变形演化规律试验研究[J]. 岩土力学, 2020, 41(3): 970-979.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!