岩土力学 ›› 2019, Vol. 40 ›› Issue (12): 4751-4758.doi: 10.16285/j.rsm.2018.2089

• 基础理论与实验研究 • 上一篇    下一篇

基于微结构模拟的土体自相关距离分析

费锁柱,谭晓慧,孙志豪,杜林枫   

  1. 合肥工业大学 资源与环境工程学院,安徽 合肥 230009
  • 收稿日期:2018-11-13 出版日期:2019-12-11 发布日期:2020-01-04
  • 通讯作者: 谭晓慧,女,1971年生,博士,教授,博士生导师,主要从事岩土工程可靠度分析方面的研究工作。E-mail: tantan9666@126.com E-mail:fsz2017@mail.hfut.edu.cn
  • 作者简介:费锁柱,男,1995年生,硕士研究生,主要从事土力学与岩土工程等方向的研究
  • 基金资助:
    国家自然科学基金(No.41572282)。

Analysis of autocorrelation distance of soil based on microstructure simulation

FEI Suo-zhu, TAN Xiao-hui, SUN Zhi-hao, DU Lin-feng   

  1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
  • Received:2018-11-13 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41572282).

摘要: 土体具有显著的空间变异性,描述土体空间变异性的重要指标是自相关距离。提出基于土体微结构模拟的方法来求解土体的自相关距离。在生成土体的微结构数值模型时,对四参数随机生长法(QSGS法)进行改进,考虑土体的粒径分布信息,使得生成的土体微结构更加合理。改进的四参数随机生长法(MQSGS法)所需的输入参数可以结合土体的扫描电镜试验及粒径分析试验获取。基于生成的土体微结构数值模型,即可计算土体的2点自相关函数,再通过曲线拟合即可求解土体的自相关距离。研究表明:与QSGS法相比,采用MQSGS法生成的土体微结构更加符合自然界的真实土体;基于MQSGS法生成的微结构数值模型计算得到的土体自相关距离略小于QSGS法得出的自相关距离。

关键词: 空间变异性, 微结构模拟, 四参数随机生长法, 扫描电镜, 粒径分布, 自相关距离

Abstract: Soil has significant spatial variability, and an important indicator for describing the spatial variability of soil is the autocorrelation distance. This paper proposes a method based on soil microstructure simulation to calculate the autocorrelation distance of soil. For generating the numerical model of the microstructure of a soil more reasonable, the traditional quartet structure generation set (QSGS) method is modified, by considering the particle size distribution information of the soil. The input parameters required for the modified quartet structure generation set (MQSGS) method can be obtained by combining the scanning electron microscopy test and the particle size analysis test of soils. Based on the generated numerical model of soil microstructure, the 2-point spatial autocorrelation function can be calculated and the autocorrelation distance of soil can be obtained by curve fitting for the 2-point spatial autocorrelation function. The study shows that soil microstructure generated by the MQSGS method is more similar to the real soil structure in nature than that generated by the QSGS method; the autocorrelation distances calculated from the microstructure numerical model generated by the MQSGS method are slightly smaller than those obtained by the QSGS method.

Key words: spatial variability, microstructure simulation, quartet structure generation set method, scanning electron microscope, particle size distribution, autocorrelation distance

中图分类号: 

  • TU 411.2
[1] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[2] 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720.
[3] 孙红, 宋春雨, 滕慕薇, 葛修润. 加荷条件下软黏土的孔隙演化特征[J]. 岩土力学, 2020, 41(1): 141-146.
[4] 王平, 朱永建, 余伟健, 任恒, 黄钟, . 软弱破碎围岩分次压实力学特性试验分析[J]. 岩土力学, 2019, 40(7): 2703-2712.
[5] 朱振南, 田 红, 董楠楠, 窦 斌, 陈 劲, 张 宇, 王炳红, . 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(S2): 169-176.
[6] 程红战,陈 健,胡之锋,黄珏皓, . 考虑砂土抗剪强度空间变异性的盾构开挖面稳定性分析[J]. , 2018, 39(8): 3047-3054.
[7] 叶万军,李长清,杨更社,刘忠祥,彭瑞奇. 冻融环境下黄土体结构损伤的尺度效应[J]. , 2018, 39(7): 2336-2343.
[8] 郭重阳,李典庆,曹子君,高国辉,唐小松. 考虑空间变异性条件下的边坡稳定可靠度高效敏感性分析[J]. , 2018, 39(6): 2203-2210.
[9] 蒋水华,曾绍慧,杨建华,姚 池,黄劲松,周创兵,. 不排水抗剪强度非平稳随机场模拟及边坡可靠度分析[J]. , 2018, 39(3): 1071-1081.
[10] 田 密, 张 帆, 李丽华, . 间接测量数据条件下岩土参数空间变异性 定量分析方法对比研究[J]. 岩土力学, 2018, 39(12): 4673-4680.
[11] 陈 毅,张虎元,杨 龙, . 遗址土劣化进程中微观结构变化的类比研究[J]. , 2018, 39(11): 4117-4124.
[12] 郭林坪,孔令伟,徐 超,杨爱武,. 静力触探参数自相关距离确定方法与影响因素分析[J]. , 2017, 38(S1): 271-276.
[13] 刘晋铭,欧忠文,肖寒冰,莫金川,杨康辉. 功能组分对固化土早期强度的影响研究[J]. , 2017, 38(3): 755-761.
[14] 郑 栋,李典庆,曹子君,方国光, . 土体参数空间变异性对边坡失效模式间相关性及系统可靠度的影响[J]. , 2017, 38(2): 517-524.
[15] 武亚军,牛 坤,唐海峰,胡志刚,陆逸天,. 药剂真空预压法处理工程废浆中生石灰的增渗作用[J]. , 2017, 38(12): 3453-3461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!