岩土力学 ›› 2018, Vol. 39 ›› Issue (S2): 169-176.doi: 10.16285/j.rsm.2018.0967

• 基础理论与实验研究 • 上一篇    下一篇

高温花岗岩遇水冷却后物理力学特性试验研究

朱振南1, 2,田 红1, 2,董楠楠3,窦 斌2,陈 劲1,张 宇4,王炳红4   

  1. 1. 中国地质大学(武汉)岩土钻掘与防护教育部工程研究中心,湖北 武汉 430074;2. 中国地质大学(武汉) 工程学院,湖北 武汉 430074; 3 安徽省地质矿产勘查局 313地质队,安徽 六安 237010;4. 中国石油化工股份有限公司河南油田分公司 石油工程技术研究院,河南 南阳 473000
  • 收稿日期:2018-06-04 出版日期:2018-12-21 发布日期:2019-01-03
  • 作者简介:朱振南,男,1992年生,博士研究生,主要从事岩石力学及数值模拟研究方面的工作。
  • 基金资助:
    国家自然科学基金项目(No.41602374,No.41674180);中央高校基本科研业务费专项资金项目(No.CUG2170207);工程地质与岩土防护学术创新基地岩土钻掘与防护教育部工程研究中心开放研究基金(No.201703)。

Experimental study of physico-mechanical properties of heat-treated granite by water cooling

ZHU Zhen-nan1, 2, TIAN Hong1, 2, DONG Nan-nan3, DOU Bin2, CHEN Jin1, ZHENG Yu4, WANG Bing-hong4   

  1. 1. Engineering Research Center of Rock-Soil Drilling & Excavation and Protection of Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, China; 2. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 3. 313 Geological Brigade, Anhui Geological and Mineral Exploration Bureau, Luan, Anhui 237010, China; 4. Research Institute of Petroleum Engineering Technology of Henan Oilfield, SINOPEC, Nanyang, Henan 473000, China
  • Received:2018-06-04 Online:2018-12-21 Published:2019-01-03
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41602374, 41674180), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUG2170207), and the Open Fund of Engineering Research Center of Rock-Soil Drilling & Excavation and Protection (201703).

摘要: 观察500 ℃内高温花岗岩遇水冷却后的物理力学特性试验研究和SEM图像发现,高温花岗岩遇水冷却后物理力学特性随温度变化规律,揭示其细观机制。结果表明,(1)高温花岗岩遇水冷却后体积随温度升高而膨胀,而质量和密度随温度升高而减小,500 ℃时体积增加1.32%,质量减小0.21%,密度减小1.51%;(2)纵波波速和横波波速皆随温度升高而降低,且前者降低幅度大于横波波速的,500 ℃时分别降低64.9%、46.8%;(3)单轴抗压强度和弹性模量随温度呈减小趋势,500 ℃时分别减小51.9%、58.6%,温度大于300 ℃时花岗岩表现出明显的塑性特征;(4)温度大于300 ℃时花岗岩内部微裂纹数目不断增多,尺寸不断增大,并逐步交叉、贯通形成微裂纹网络,导致高温花岗岩遇水冷却后物理力学性质的劣化

关键词: 高温岩石, 遇水冷却, 物理特性, 力学特性, 扫描电镜(SEM)

Abstract: Laboratory tests are conducted to study the physico-mechanical properties of water cooling treated granite under room temperature to 500 ℃. Variations of physico-mechanical properties are analyzed in detail. Meanwhile, the physico-mechanical changing mechanisms of water cooling treated granite are revealed by the pictures of scanning electron microscope (SEM). The results show that: (1) The volume of the water cooling treated granite specimens under high temperature increases, while the mass and density decrease; for specimens treated at 500 ℃, the volume increases by 1.32%; the mass decreases by 0.21%; and the density decreases by 1.51%. (2) Longitudinal and transverse wave velocities of the water cooling treated granite both decrease; when temperature rises, and the decrease of longitudinal wave velocity is greater in rate than that of transverse wave velocity, when a granite specimen is heated to 500 ℃, longitudinal and transverse wave velocities decrease by 64.9% and 46.8%, respectively. (3) Uniaxial compressive strength and elastic modulus of water cooling treated granite decrease with temperature; and they decrease by 51.9% and 48.6% respectively at 500 ℃; the specimens show an obvious ductility characteristic when they are heated to 300 ℃. (4) The pictures of SEM show that many microcracks inside granite specimens are generated and extended after high-temperature treatment. With further increase of the temperature to 300 ℃, the quantity of microcracks rose gradually and the sizes of microcracks also increased gradually; and there will be a microcrack network appearing inside the granite specimen, causing deteriorations of physico-mechanical characteristics of water cooling treated granite.

Key words: heat-treated rock, water cooling, physico-mechanical properties, scanning electron microscope(SEM)

中图分类号: 

  • TU 452
[1] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[2] 蒋长宝, 魏 财, 段敏克, 陈昱霏, 余塘, 李政科, . 饱水和天然状态下页岩滞后效应及阻尼特性研究[J]. 岩土力学, 2020, 41(6): 1799-1808.
[3] 孟庆彬, 钱唯, 韩立军, 蔚立元, 王丛凯, 周星, . 极弱胶结岩体再生结构的形成机制 与力学特性试验研究[J]. 岩土力学, 2020, 41(3): 799-812.
[4] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[5] 彭守建, 岳雨晴, 刘义鑫, 许江, . 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291-3299.
[6] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[7] 王冲, 胡大伟, 任金明, 周辉, 卢景景, 刘传新, . 侵蚀性环境对地下结构渗透和力学特性影响研究[J]. 岩土力学, 2019, 40(9): 3457-3464.
[8] 丛 怡, 丛 宇, 张黎明, 贾乐鑫, 王在泉, . 大理岩加、卸荷破坏过程的三维颗粒流模拟[J]. 岩土力学, 2019, 40(3): 1179-1186.
[9] 王家全, 张亮亮, 赖 毅, 陆梦梁, 叶 斌, . 加筋土挡墙静动力学特性大模型试验研究[J]. 岩土力学, 2019, 40(2): 497-505.
[10] 李静, 孔祥超, 宋明水, 汪勇, 王昊, 刘旭亮, . 储层岩石微观孔隙结构对岩石力学特性 及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156.
[11] 郭孔灵, 杨磊, 盛祥超, 梅洁, 李邦翔, 张波, 杨为民, 宋光啸, . 水力耦合作用下含三维裂隙类岩石材料的 破裂力学行为及声发射特征[J]. 岩土力学, 2019, 40(11): 4380-4390.
[12] 周科平, 刘 维, 周彦龙, 林 允, 薛 轲. 不同渗透力的类充填体力学特性及损伤软化 本构模型研究[J]. 岩土力学, 2019, 40(10): 3724-3732.
[13] 宋宏芳, 岳祖润, 李佰林, 张松, . 季节冻土区高速铁路防冻胀路基保温强化特性研究[J]. 岩土力学, 2019, 40(10): 4041-4048.
[14] 陈子全,何 川,董唯杰,马杲宇,潘旭勇,裴成元,. 北疆侏罗系与白垩系泥质砂岩物理力学特性对比分析及其能量损伤演化机制研究[J]. , 2018, 39(8): 2873-2885.
[15] 陈合龙,韦昌富,田慧会,魏厚振,. 气饱和含CO2水合物砂的三轴压缩试验[J]. , 2018, 39(7): 2395-2402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!