岩土力学 ›› 2020, Vol. 41 ›› Issue (9): 2913-2921.doi: 10.16285/j.rsm.2019.1982
张继文1, 2, 3,穆青翼1,廖红建1,刘芬良1
ZHANG Ji-wen1, 2, 3, MU Qing-yi1, LIAO Hong-jian1, LIU Fen-liang1
摘要: 土体未冻结含水率曲线模型描述温度和未冻结含水率之间的关系,该模型对计算冻土强度、变形以及水热迁移具有重要意义。考虑孔隙水毛细和吸附作用,提出了一个新的土体未冻结体积含水率曲线模型。该模型假设在较高温度下(0~?2 ℃),毛细作用支配土体中孔隙水冻结,该过程中毛细水冻结受孔隙比影响。另一方面,在较低温度下(<?2 ℃),吸附作用在孔隙水冻结中起主导作用,该过程中吸附水冻结受比表面积影响。结合文献中已有土体未冻结体积含水率曲线的测试数据(包括不同土体孔隙比、比表面积以及广温度范围),对模型进行验证。同时将所提模型与文献中3种常见模型计算结果进行对比,讨论新模型的优越性。结果发现,只有新提出的模型可只用一套参数计算不同土体孔隙比的未冻结体积含水率曲线。此外,针对土体在广温度范围条件下的未冻结体积含水率曲线,新提出模型比已有模型有更好的计算结果。
中图分类号:
[1] | 张 泽, 马 巍, ROMAN Lidia, MELNIKOV Andrey, 杨 希, 李宏璧. 基于冻融次数−物理时间比拟理论的冻土 长期强度预测方法[J]. 岩土力学, 2021, 42(1): 86-92. |
[2] | 杨高升, 白冰, 姚晓亮, 陈佩佩, . 非饱和冻土水汽迁移与相变过程的 光滑粒子法模拟[J]. 岩土力学, 2021, 42(1): 291-300. |
[3] | 秦爱芳, 胡宏亮. 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41(S1): 123-131. |
[4] | 王涛, 刘斯宏, 宋迎俊, 孔维民, . 基于骨架孔隙比的土石混合料强度变形特性[J]. 岩土力学, 2020, 41(9): 2973-2983. |
[5] | 房营光, 陈建, 谷任国, 巴凌真, 舒浩恺, . 基于有效比表面积修正的Kozeny-Carman方程 在黏土渗透中的适用性研究[J]. 岩土力学, 2020, 41(8): 2547-2554. |
[6] | 李昆鹏, 赵晓彦, 肖 典, 李 晋. 酸雨水化学损伤加剧粉砂质泥岩崩解机制研究[J]. 岩土力学, 2020, 41(8): 2693-2702. |
[7] | 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970. |
[8] | 张明礼, 温智, 董建华, 王得楷, 岳国栋, 王斌, 高樯. 考虑降雨作用的多年冻土区不同地表土质 活动层水热过程差异分析[J]. 岩土力学, 2020, 41(5): 1549-1559. |
[9] | 陈琼, 崔德山, 王菁莪, 刘清秉. 不同固结状态下黄土坡滑坡滑 带土的蠕变试验研究[J]. 岩土力学, 2020, 41(5): 1635-1642. |
[10] | 胡田飞, 王天亮, 常键, 刘建勇, 卢玉婷, . 基于有限体积法的冻土水热耦合程序开发及验证[J]. 岩土力学, 2020, 41(5): 1781-1789. |
[11] | 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018. |
[12] | 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600. |
[13] | 周智超, 王淼, 孟上九, 孙义强, . 低温影响下FBG永久变形计算方法研究[J]. 岩土力学, 2020, 41(12): 4005-4014. |
[14] | 吴琪, 刘抗, 郭启洲, 赵凯, 陈国兴, . 基于二元介质模型的砂类土 小应变剪切模量评价方法[J]. 岩土力学, 2020, 41(11): 3641-3650. |
[15] | 唐丽云, 王鑫, 邱培勇, 金龙, . 冻土区土石混合体冻融交界面剪切性能研究[J]. 岩土力学, 2020, 41(10): 3225-3235. |
|