岩土力学 ›› 2020, Vol. 41 ›› Issue (5): 1549-1559.doi: 10.16285/j.rsm.2019.0297

• 基础理论与实验研究 • 上一篇    下一篇

考虑降雨作用的多年冻土区不同地表土质 活动层水热过程差异分析

张明礼1, 2, 3,温智2,董建华1,王得楷3,岳国栋1,王斌1,高樯2   

  1. 1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050; 2. 中国科学院 西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州 730000;3. 甘肃省科学院 地质自然灾害防治研究所,甘肃 兰州 730000
  • 收稿日期:2019-01-30 修回日期:2019-09-12 出版日期:2020-05-11 发布日期:2020-07-07
  • 通讯作者: 温智,男,1976年生,博士,研究员,博士生导师,主要从事冻土力学与寒区工程方面的研究工作。E-mail:wenzhi@lzb.ac.cn E-mail:mingli_0919@126.com
  • 作者简介:张明礼,男,1987年生,博士(后),副教授,硕士生导师,主要从事冻土工程方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 41801033, No. 41971087, No. 41961010);冻土工程国家重点实验室开放基金(No. SKLFSE201804);兰州理工大学红柳优秀青年人才支持计划资助;中国博士后科学基金(No. 2017M623268)。

Response of hydrothermal activity in different types of soil at ground surface to rainfall in permafrost region

ZHANG Ming-li1, 2, 3, WEN Zhi2, DONG Jian-hua1, WANG De-kai3, YUE Guo-dong1, WANG Bin1, GAO Qiang2   

  1. 1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; 3. Geological Hazards Prevention Institute, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2019-01-30 Revised:2019-09-12 Online:2020-05-11 Published:2020-07-07
  • Supported by:
    This work was supported by the Natural Science Foundation of China (41801033, 41971087, 41961010), the Open Found of the State Key Laboratory of Frozen Soil Engineering (SKLFSE201804), Hongliu Support Funds for Excellent Youth Talents of Lanzhou University of Technology, and China Postdoctoral Science Foundation (2017M623268).

摘要: 为明确气候湿化背景下多年冻土活动层对降雨的水热响应机制,探讨了考虑降雨作用的不同土质地表能水平衡差异和活动层水热过程。基于土壤–地表–大气能量平衡的冻土水–汽–热耦合模型,以青藏高原北麓河地区2013年实测气象资料为模型驱动数据,定量分析了高原真实野外降雨条件下3种典型地表土质(砂土、亚砂土、粉质黏土)地表水分和能量平衡差异、活动层内部水分与能量输运分量变化过程和耦合机制。结果表明:随着土壤粒径增大,地表净辐射增大、蒸发潜热增大、感热通量减少、土壤热通量减小,不同土质地表蒸发潜热和地表感热通量差异最为显著,地表能量平衡差异在暖季较大、冷季较小;土壤粒径越大,水势梯度液态水和温度梯度水汽迁移越显著,但温度梯度水汽通量减小、水势梯度液态水通量增大;随着土壤粒径增大,土壤浅表层水分减少,25~75 cm水分略有增加;随着土壤粒径增大,土壤导热系数、降雨入渗对流传热和地表蒸发量增大、热传导通量减小,土体温度梯度降低,相同深度处土壤温度更高,活动层厚度增大,不利于多年冻土稳定。研究成果可为湿化背景下多年冻土的稳定性预测和保护提供参考。

关键词: 多年冻土, 活动层, 水热变化, 土壤质地, 降雨, 地表能水平衡

Abstract: In order to understand the hydrothermal activity mechanism of active layers to rainfall in permafrost regions caused by humidification of climate, the differences of ground surface energy balance and hydrothermal activity in different types of shallow soil with the consideration of rainfall were discussed. Based on the meteorological data in 2013 observed at Beiluhe observation station of Tibet Plateau, three types of shallow ground soil (i.e., sandy soil, sandy loam and silty clay) were selected to compare the differences in the water content and energy balance at the ground surface, dynamic processes of water and energy transport in active layers and coupling mechanism under rainfall condition in the plateau using a coupled water-vapor-heat transport model. The results show that the increase of soil particle size leads to the increase of surface net radiation and latent heat of evaporation, but the decrease of soil heat flux. The difference of surface energy balance, especially the sensible heat flux and latent heat of evaporation, are larger in the warm season but smaller in the cold season. The liquid water transport under hydraulic gradient and the water-vapor transport under thermal gradient are obvious as the particle size in soil increases. However, the water-vapor flux under thermal gradient increases but the liquid water flux under hydraulic potential gradient decreases. As a result, the water content in shallow soil decreases accordingly but it increases slightly at the depth of 25 ~75 cm. Moreover, with the increase of soil particle size, the thermal conductivity of soil, convective heat transfer under rainfall and surface evaporation increase, but the soil heat conduction flux and soil temperature gradient decrease. Thus, soil temperature in sandy soil is much higher than that of sandy loam and silty clay at the same depth. The permafrost table declines with the increase of the thickness of active layer, which is unfavourable to permafrost stability. The results can provide theoretical reference for stability prediction and protection of permafrost caused by humidification of climate.

Key words: permafrost, active layer, thermal-moisture dynamics, soil texture, rainfall, ground surface energy and water balance

中图分类号: 

  • TU 445
[1] 王力, 李高, 陈勇, 谭建民, 王世梅, 郭飞, . 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学, 2021, 42(3): 846-854.
[2] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[3] 赵久彬, 刘元雪, 何少其, 杨骏堂, 柏准, . 三峡库区阶跃变形滑坡水平位移与降雨量 数学统计模型[J]. 岩土力学, 2020, 41(S1): 305-311.
[4] 罗易, 张家铭, 周峙, 契霍特金, 米敏, 沈筠, . 降雨-蒸发条件下土体开裂临界 含水率演变规律研究[J]. 岩土力学, 2020, 41(8): 2592-2600.
[5] 潘永亮, 简文星, 李林均, 林雨秋, 田朋飞. 基于改进Green-Ampt模型的花岗岩 残积土边坡降雨入渗规律研究[J]. 岩土力学, 2020, 41(8): 2685-2692.
[6] 简文彬, 黄聪惠, 罗阳华, 聂闻. 降雨入渗下非饱和坡残积土湿润锋运移试验研究[J]. 岩土力学, 2020, 41(4): 1123-1133.
[7] 黄晓虎, 易武, 黄海峰, 邓永煌. 优势流入渗与坡体变形关系研究及应用[J]. 岩土力学, 2020, 41(4): 1396-1403.
[8] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[9] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[10] 朱元甲, 贺拿, 钟卫, 孔纪名, . 间歇型降雨对堆积层斜坡变形破坏的物理模拟研究[J]. 岩土力学, 2020, 41(12): 4035-4044.
[11] 年庚乾, 陈忠辉, 张凌凡, 包敏, 周子涵. 边坡降雨入渗问题中两种边界条件的 处理及应用[J]. 岩土力学, 2020, 41(12): 4105-4115.
[12] 唐丽云, 王鑫, 邱培勇, 金龙, . 冻土区土石混合体冻融交界面剪切性能研究[J]. 岩土力学, 2020, 41(10): 3225-3235.
[13] 刘丽, 吴羊, 陈立宏, 刘建坤, . 基于数值模拟的湿润锋前进法测量精度分析[J]. 岩土力学, 2019, 40(S1): 341-349.
[14] 陈宇龙, 内村太郎, . 基于弹性波波速的降雨型滑坡预警系统[J]. 岩土力学, 2019, 40(9): 3373-3386.
[15] 黄晓虎, 雷德鑫, 夏俊宝, 易武, 张鹏, . 降雨诱发滑坡阶跃型变形的预测分析及应用[J]. 岩土力学, 2019, 40(9): 3585-3592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .
[3] 张莎莎,谢永利,杨晓华,戴志仁. 典型天然粗粒盐渍土盐胀微观机制分析[J]. , 2010, 31(1): 123 -127 .
[4] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[5] 贺 炜,赵明华,陈永贵,王泓华. 土-水特征曲线滞后现象的微观机制与计算分析[J]. , 2010, 31(4): 1078 -1083 .
[6] 黄 阜,杨小礼. 考虑渗透力和原始Hoek-Brown屈服准则时圆形洞室解析解[J]. , 2010, 31(5): 1627 -1632 .
[7] 左宇军,李术才,秦泗凤,李利平. 动力扰动诱发承压水底板关键层失稳的突变理论研究[J]. , 2010, 31(8): 2361 -2366 .
[8] 陈庆发,周科平. 低标号充填体对采矿环境结构稳定性作用机制研究[J]. , 2010, 31(9): 2811 -2816 .
[9] 朱彦鹏,魏升华. 深基坑支护桩与土相互作用的研究[J]. , 2010, 31(9): 2840 -2844 .
[10] 王艳霞. 模糊数学在边坡稳定分析中的应用[J]. , 2010, 31(9): 3000 -3004 .