岩土力学 ›› 2020, Vol. 41 ›› Issue (12): 4035-4044.doi: 10.16285/j.rsm.2020.0318

• 基础理论与实验研究 • 上一篇    下一篇

间歇型降雨对堆积层斜坡变形破坏的物理模拟研究

朱元甲1, 2,贺拿1,钟卫2,孔纪名2   

  1. 1. 河南理工大学 土木工程学院,河南 焦作 454000;2. 中国科学院水利部 成都山地灾害与环境研究所,四川 成都 610041
  • 收稿日期:2020-03-19 修回日期:2020-05-30 出版日期:2020-12-11 发布日期:2021-01-18
  • 通讯作者: 钟卫,男,1980年生,博士,硕士生导师,主要从事斜坡灾变理论及其控制技术研究工作。E-mail: zhongwei@imde.ac.cn E-mail: 2428466183@qq.com
  • 作者简介:朱元甲,男,1992年生,硕士研究生,主要从事滑坡预警及防治方面的研究工作
  • 基金资助:
    国家自然科学基金(No.41302284);河南省博士后经费资助(No.19030069);中国石油化工股份有限公司科研基金(No.318022-8)。

Physical simulation study of deformation and failure accumulation layer slope caused by intermittent rainfall

ZHU Yuan-jia1, 2, HE Na1, ZHONG Wei2, KONG Ji-ming2   

  1. 1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu, Sichuan 610041, China
  • Received:2020-03-19 Revised:2020-05-30 Online:2020-12-11 Published:2021-01-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41302284), the Henan Postdoctoral Funding(19030069) and the China Petroleum & Chemical Corporation Research Fund(318022-8).

摘要: 为研究间歇型降雨作用下缓倾堆积层斜坡的变形破坏特征,以樱桃沟滑坡为例,进行了降雨作用下斜坡变形破坏的物理模拟研究。试验结果表明:前期降雨作用下坡体变形特征表现为前缘滑移沉陷、中部滑移、后缘沉陷、坡体裂缝生成,且前缘裂缝扩张明显,后期降雨作用下坡脚区域首先发生滑塌,然后依次向后缘传递发生逐阶滑塌破坏;降雨入渗易在基岩面上储存,形成暂态地下水位、高孔隙水压力区域和坡向渗流场,基岩面附近土体饱水时间长,软化程度高,抗剪强度弱化显著,边坡易沿基覆界面土层发生滑坡;坡体滑动易发生在降雨间歇期,触发特征表现为雨后坡体暂态饱和区水分和坡表积水持续下渗,导致地下水位上升滞后于降雨,造成坡体内浮托力、渗透力和孔隙水压力增大,有效应力降低,诱发滑坡。

关键词: 间歇型降雨, 缓倾堆积层斜坡, 物理模拟, 变形

Abstract: To study the deformation and failure characteristics of the slope of gently inclined accumulation layer caused by intermittent rainfall, taking the Yingtaogou landslide as an example, a physical simulation study on the slope deformation and failure under the action of rainfall was carried out. The results showed that under the action of early rainfall, the deformation characteristics of the slope body showed the sliding and subsidence at the leading edge, the sliding in the middle part, the subsidence at the rear edge, and the formation of slope cracks and the obvious expansion of leading-edge cracks. Under the action of late rainfall, the slope foot area was the first to slide, and then the sliding was transferred to the trailing edge resulting in progressive sliding failure. Rainfall infiltration was easy to store on the bedrock surface, forming transient groundwater level, high pore water pressure area and slope seepage field. The soil near the bedrock surface was saturated with water for a long time, so it had a high degree of softening, and a significant weakening in shear strength, causing the slope prone to landslide along the soil layer at the base interface. Slope sliding tended to occur during the rainfall intermittent period. The triggering characteristic of slope sliding were as follows: after rain, the continuous infiltration of the water in the transient saturated area of slope body and the accumulated water on the slope surface led to the rise of the groundwater level lagging behind the rainfall, causing the increase of buoyancy in the slope, permeability and pore water pressure, so that the effective stress in the slope body decreased, which induced the landslide.

Key words: intermittent rainfall, slope of gently inclined accumulation layer, physical simulation, deformation

中图分类号: 

  • TU42
[1] 陶志刚, 任树林, 郝宇, 李强, 付强, 何满潮, . 层状反倾边坡破坏机制及NPR锚索控制效果 物理模型试验[J]. 岩土力学, 2021, 42(4): 976-990.
[2] 李亚峰, 聂如松, 李元军, 冷伍明, 阮波, . 间歇性循环荷载下路基细粒土填料永久 变形特性及预测模型[J]. 岩土力学, 2021, 42(4): 1065-1077.
[3] 谢济仁, 乔世范, 余鹏鲲, 内村太郎, 王功辉, 江耀, 方正, 田京立. 土质滑坡坡表倾斜变形的室内外试验研究[J]. 岩土力学, 2021, 42(3): 681-690.
[4] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[5] 胡利文, 刘志军, . 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799.
[6] 顾晓强, 吴瑞拓, 梁发云, 高广运, . 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845.
[7] 王力, 李高, 陈勇, 谭建民, 王世梅, 郭飞, . 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学, 2021, 42(3): 846-854.
[8] 侯振坤, 唐孟雄, 胡贺松, 黎剑华, 张树文, 徐晓斌, 刘春林, . 随钻跟管桩竖向承载性能原位试验 与室内物理模拟试验对比研究[J]. 岩土力学, 2021, 42(2): 419-429.
[9] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[10] 王川, 冷先伦, 李海轮, 李刚, . 节理分布空间变异的地下洞室稳定性概率分析[J]. 岩土力学, 2021, 42(1): 224-232.
[11] 杨钊, 乔春生, 陈松. 基于蒙特卡罗法的岩体变形模量统计 特征及参数权重分析[J]. 岩土力学, 2020, 41(S1): 271-278.
[12] 郭健, 陈健, 胡杨. 基于小波智能模型的地铁车站基坑变形 时序预测分析[J]. 岩土力学, 2020, 41(S1): 299-304.
[13] 赵久彬, 刘元雪, 何少其, 杨骏堂, 柏准, . 三峡库区阶跃变形滑坡水平位移与降雨量 数学统计模型[J]. 岩土力学, 2020, 41(S1): 305-311.
[14] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[15] 曾超峰, 薛秀丽, 宋伟炜, 李淼坤, 白宁. 开挖前降水引发基坑变形机制模型试验研究[J]. 岩土力学, 2020, 41(9): 2963-2972.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[3] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[4] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[5] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[6] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[7] 朱泽奇,盛 谦,梅松华,张占荣. 改进的遍布节理模型及其在层状岩体地下工程中的应用[J]. , 2009, 30(10): 3115 -3121 .
[8] 徐远杰,潘家军,刘祖德. 混凝土面板堆石坝的一种坝坡修整算法[J]. , 2009, 30(10): 3139 -3144 .
[9] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[10] 王 刚,蒋宇静,王渭明,李廷春. 新型数控岩石节理剪切渗流试验台的设计与应用[J]. , 2009, 30(10): 3200 -3209 .